

Department of Mechanical Engineering

Given on the occasion of the opening

of the Design and Project Exhibition

Joseph Black Lecture

June 2005

Balancing Conflicting Needs by Design

given by

Geoff E Kirk RDI CEng FRAeS FIMechE

Contents

Keynote Lectures, 1974-2005 Foreword Joseph Black Keynote Lecture MEng Group Business & Design Projects Project Sponsorship 2004 - 2005 Integrated Industrial Projects Engineering Projects Engineering with Language Prizes 2004

Keynote Lectures 1974 – 2005

- 1974 Design as a Team Game E. McEwanVice-Chairman, Engineering Joseph Lucas Ltd
- 1975 Ralph Shire Memorial Lecture: Some Detail Design Problems in Aircraft Gas Turbines
 L. Haworth FRS
 Director Rolls-Royce Ltd
- 1976 Innovation in Engineering Design Dr A. Moulton CBE. Director, Moulton Developments Ltd
- 1977 Ship Design R.J. Daniel OBE Director General of Ships and Head of Royal Corps of Naval Constructors
- 1978 *The Designer's Craft* Dr G.B.R. Feilden CBE Director,General British Standards Institution
- 1979 Design for Maintenance in British Rail
 K. Taylor
 Chief Mechanical & Electrical
 Engineer, British Railways Board
- 1987 1980 Effective Industrial Innovation and its Contribution to Britain's Economic Recovery V.J. Osola Redman Heenan International
- 1981 Investment in New Product Development Viscount Caldecot DSC FEng Chairman, Delta Group plc

- 1982 The Context of Design Sir Kenneth Corfield Chairman and Chief Executive, Standard Telephones and Cables Ltd
- 1983 Higher Innovation: The Management of Creative Disorder Sir Basil Blackwell FEng Vice-Chairman and Chief Executive, Westland plc
- 1984 Designing for Dependability in Advanced Power Plant & Associated Systems Dr W. Rizk CBE FEng FIMechE Chairman, GEC Diesels Ltd and GEC-Ruston GasTurbines Ltd
- 1985 Better Design for British Industry Sir William Barlow FEng Chairman and Chief Executive, BICC, and Chairman, The Design Council
- 1986 The Car of the Year 2000 A.C. Rudd BSc(Eng) FSAE Managing Director, Lotus Engineering Ltd
 - Design for Living Sir Montague Finniston FEng FRS
- 1988 Design: the Common Goal John Butcher MP Parliamentary Under Secretary of State Department of Trade and Industry

- 1989 Industry: Design and Young People Ivor Owen The Design Council
- 1990 Effective Management of Design Peter Hills SERC Engineering Design Coordinator, The Design Council
- 1991 Competing with Better Products in Less Time Keith Nichols UK Marketing Manager, (CIM) Digital Equipment Ltd
- 1992 Concorde and its Successor Sidney Swadling Director of Engineering, British Aerospace Airbus Ltd
- 1993 Metrology in the Field of Engineering David McMurty Chairman and Chief Executive, Renishaw plc
- 1994 Tribology in Machine Design Professor Duncan Dowson CBE FRS FEng
- 1995 Design to Thrive Professor Ivan Yates CBE FEng
- 1996 Innovation-Led Competitiveness through Equivalence in Product, Organisation, Technology and Culture (EPOC). Professor Gordon Edge
- 1997 Engineering & Design Against the Odds Mr James Dyson, Chairman Dyson Appliances

- 1998 Technological Innovation A managed resource Professor Chris Pearce Inbis Group plc
- 1999 The Creation of the Gos Challenger Adrian Thompson Paragon Mann Ltd
- 2000 The Birth of a Morgan Innovation and Tradition Create a New Sports Car Charles Morgan Joint Managing Director Morgan Motor Company Ltd
- 2001 The Farnborough F1 Air Taxi A Revolution in Air Travel Richard Noble OBE, Director Farnborough Aircraft
- 2002 Designing the Human Knee Professor John O'Connor Oxford Orthopaedic Engineering Centre, University of Oxford
- 2003 Challenging the Design Process Models Prof Mogens Myrup Andreasen Technical University of Denmark
- 2004 Information and Knowledge Management in an International Design Firm Mike Shears CBE FREng Chairman of Trustees, Arup Group
- 2005 Balancing Conflicting Needs by Design Geoff E Kirk RDI CEng FRAeS FIMechE Chief Design Engineer - Civil Aerospace. Rolls-Royce plc

Foreword

Welcome to the 2005 Design and Project Exhibition and the Joseph Black Lecture given by Geoff Kirk, Chief Design Engineer - Civil Aerospace, Rolls-Royce plc.

This booklet contains details of the 11 Group Design and Business projects and 3 Aerospace projects undertaken by 3rd year students, and the 116 engineering projects and 19 language projects undertaken by 4th year students. This year we have included in the booklet a brief synopsis of each of these engineering projects so that people will have a more complete understanding of the activities being undertaken. A large number of these projects are undertaken in conjunction with industry to which we record our thanks, but we are very happy to further discuss proposals from potential collaborators across the disciplines. Details of all projects and the previous 6 keynote addresses are included on the Departments website at www.bath.ac.uk/mech-eng/design-exhibition. What has become apparent in recent years, or perhaps has become more apparent is the range of considerations that a modern engineer has to consider. In particular the economic and environmental or legislative drivers that manifest themselves. Thus, as the title strongly implies it is a Group Design and Business project, which means that each team has to produce a business plan to assess the marketability and viability of the activity that they are involved with. This year we have been able to enhance this dimension of the activity with additional input via the Higher Education Innovation Fund (HEIF) and also the Design Council. This has been via the appointment of an Enterprise Officer and the introduction of some design/business development master classes. This has been in conjunction with our University's Research and Innovation Services operation. (www.bath.ac.uk/researchandinnovation/index.html).

It is thus particularly appropriate that we have Geoff Kirk, Chief Design Engineer - Civil Aerospace, Rolls-Royce to deliver the 2005 Joseph Black Lecture - "Balancing Conflicting Needs by Design". To see the challenges in terms of pressures, velocities and temperatures that Geoff is referring to, the Rolls Royce website has its award winning 'Journey through a jet Engine' at <u>http://www.rolls-royce.com/education/schools/journey02/flash.html</u>. Geoff has had a long and distinguished career with Rolls-Royce with a particular emphasis on design. His work in the area has been recognized by the award of the Royal Aeronautical Society (RAeS) Bronze Medal, The Prince Philip Designers Prize and most recently by his appointment to be a council member of the Design Council.

S J Culley On behalf of the design team

2005 Joseph Black Lecture

Balancing Conflicting Needs by Design

Geoff E Kirk RDI Chief Design Engineer-Civil Aerospace

Rolls-Royce plc PO Box 31 Derby DE24 8BJ Tel: 01332 249680 Fax: 01332 248510 Email: geoff.kirk@rolls-royce.com

Registered office: Rolls-Royce International Limited 65 Buckingham Gate London SW1E 6AT Tel: +44 (0) 20 7222 9020 Fax: +44 (0) 20 7227 9178 Web: www.rolls-royce.com

1. Introduction

The days when designers were concerned, if ever they were, with solely technical challenges are certainly gone. Increasingly there is the need for better products services, lower life cycle costs, faster time to market, disposal and sustainable production, the design task has become more interdisciplinary.

This paper describes some of the issues facing a designer, particularly in the aerospace industry, and by some examples illustrates some recent issues and how they were resolved.

2. Requirements

Every product has a customer or a user. Customers are varied; they may be an individual, an organisation or a socio-economic group. Needs may be clearly defined and be very specific or be quite loosely expressed aspirations. There may be a number of different customers for a single product.

Requirements are defined in terms of the product's attributes, its function, mass, unit cost etc. They are conditional statements about attribute quantities and are often expressed as inequalities, for example the performance of the product must be at least a certain value while the cost may not exceed another.

There are occasions when attributes can be traded, if one attribute over achieves then another may be allowed to deviate from the initial requirement within a limiting value.

Value is lost if a statement of requirements is presented unilaterally without discussion there can be many subtleties that are lost in translation. It is important that the designer is intimately involved in the interpretation of the customer's needs and the eventual capture of the requirements.

For air transport, in particular, there are many customers, or parties with an interest in the design of the aeroplane and engines. Figure 1 shows the customers for an aero engine. These can be grouped into major interest groups, the passenger, the airline, the airframer, the environment and the engine manufacturer's employees and shareholders.

Figure 1- The Customers

3. Air Transport

Air transport has increased significantly over the last 20 to 30 years, on average about 5% per annum. It forms a global network linking people, countries and cultures. Over 1.6 billion passengers fly for business and leisure. Air transport is particularly vital for business, creating jobs by opening new market opportunities. Products and services are moved quickly over long distances and over 40% of world trade of goods (by value) is carried by air. Air transport provides 28 million direct, indirect and induced jobs worldwide

The Passenger

Passengers require convenience, comfort, punctuality and low cost, safety is taken for granted. There is a significant potential for growth in passenger air travel as shown by comparing the relationship between gross GDP and the number of passenger trips taken, figure 2. There are a number of countries with large populations such as India and China whose GDP is set to grow in future and whose trips per capita are significantly lower than most western countries. It is predicted that the growth of traffic will continue at the same 5% rate for the foreseeable future.

Growth will be by both flying hub-to-hub, consolidation, and point to point, fragmentation. This requires two types of aircraft: a long-range large capacity aeroplane and a smaller one, still capable of long range, but with the flexibility to operate economically over short and medium ranges.

The Airline

An airline generates a financial return from passengers and freight and its profitability derives directly from the difference between its cost and its revenues, the yield. A business trades heavily upon the confidence of its customer and the global events of the past few years, such as SARS, international conflicts, and maligned actions, have shaken the confidence of the travelling public. In addition the recent dramatic increase in fuel cost has added to their difficulties. So despite the continuing growth of passenger and freight traffic, airline profitability has been hugely variable.

Figure 2 - The Potential for Growth

The airline industry has made structural changes and increased the number of passengers flying on each aircraft, even so airline's yields have decreased.

This volatility and lack of stability for the airline world imposes design requirements that will allow the customer to be protected as much as possible from the changes within their business and their global environment

The Airframer

When designing a new aircraft, the Airframer requires efficient engines that address all their customers' needs both initially and over the projected life of the aircraft - a timescale that can be 50 years.

There are the obvious attributes that determine the aircraft's capability to perform the required mission such as thrust levels, fuel consumption and elements relating to the physical installation of the engine onto the aircraft such as weight, size, systems and interfaces. The engines must also meet all the regulatory rules. But today, an airframer's requirements extend much further, encompassing a view upon the total cost of operation of the aircraft over its projected life. Thus, the mission must be achieved at an economical rate, measured by the Total Aeroplane Revenue and Operating Cost (TAROC) of the aeroplane expressed as the cost per flying hour or cost per trip. There are a number of engine related factors that contribute to TAROC, acquisition cost, fuel burn, noise, emissions and maintenance costs. The airframer will also be concerned about the engine's impact upon the residual value of the aircraft should a customer choose to sell it.

The Environment

The growth of air transport has increased pressure on the environment. There are a number of factors manufacturing processes, operational issues, maintenance and the end of life disposal.

The major one, the operational issues, can be broken down into two parts: Global - the climate change that is dominated by fuel use and Local - the local air quality, nitrous oxide and particulates and noise. The concerns are expressed differently in different parts of the world; in Europe, global and local concerns dominate whereas in North America the concerns are predominately local. In the rest of the world the environment is generally not a key issue apart from a few exceptions, notably Japan.

The aerospace industry has been addressing these issues for a number of years with significant reductions in emissions and noise. However the projected increase in air travel means that the efforts to improve must also be increased. The senior executives of the major aerospace companies in Europe, the Advisory Council for Aeronautics Research in Europe (ACARE) have committed their respective companies to specific environmental targets that address quality, affordability, the environment, safety, the efficiency of air transport and security.

The Engine Manufacturer

The investment required for a new engine although not the same as the aeroplane is still extremely large. The shareholders of the company require a return on their investment. The employees of the company also have a stake in the success of the product.

4. The Aerospace Response

Despite all the challenges, companies are still willing to invest large sums of money to produce new aircraft. In the large aeroplane market both Airbus, with the A380 and Boeing with the 787 Dreamliner have embarked on significant new programmes designed to address the major needs. Both the aircraft presented significant challenges for the designer.

The A380 is aimed at high-density traffic, 550 passengers serving the major airport hubs. This is the largest passenger aeroplane in the world. The engines needed to be capable of generating 80,000lbf thrust and be very efficient but quieter and with lower emissions than current comparable aircraft.

Airbus A380 Maiden Flight

The 787 Dreamliner was designed to be a complete family offering a shortrange operation and two long-range versions of 223 or 260 passengers. This required an engine capable of operating equally efficiently in the thrust range of 53,000 lb to 70,000 lb to satisfy both the short-range and long-range requirements. A great deal of emphasis was also placed on the aircraft environmental impact to be clean and quiet.

Boeing 787 Dreamliner

The 787 Dreamliner was launched after all the concerns relating to air travel had manifested themselves so the conflicts for the designer became even more pronounced.

During the design phase there were two prime examples that illustrates where the designer reconciled conflicting requirements.

5. The Engine Response

The Trent 1000 Fan

A factor that dominates the engine architecture is the choice of fan and its diameter once this has been set it is extremely difficult to change and seals the engine characteristics for the remainder of its life. The fan diameters of large civil transports have increased over the years to increase propulsion efficiency to reduce fuel burn. This has the benefit of also reducing jet velocities and hence noise.

Trent 1000 Engine

However increasing the fan diameter also increases weight and aerodynamic drag to the point where the improvement in propulsion efficiency is negated and fuel burn increases, figure 3 shows this trend. Increased levels of technology can obviously improve the absolute levels but the basic conflict remains.

Figure 3 - Optimising Noise and Fuel Burn

This may appear to be a conflict between the environmental and operational requirements, noise versus lower fuel costs. But increasing fuel burn increases the emission of CO_2 so there is an additional conflict between two environmental issues, local airport requirements and global issues. The understanding of this issue comes about because of the designer's concern to optimise the design.

Trent engines have three spools, the Low (LP) Intermediate (IP) and High Pressure (HP). A low hub tip ratio fan in the LP system, where the hub radius is reduced, gives more airflow for the same fan diameter. This leads to lower weight, lower drag and hence lower fuel burn but the capability of the fan to increase pressure at the root is reduced. The overall pressure ratio can be maintained by increasing the combined pressure ratio of the other two systems. The enabling technology was to be able to raise this pressure ratio in the same number of stages with no loss of efficiency.

With the new architecture it was then possible, by careful optimisation of the by-pass flow and the fan tip pressure ratio, to optimise the fuel burn loop shape as shown in figure 4. The majority of fuel used in a long-range mission is during cruise whereas in the short -range mission the majority of fuel is used in climb and descent, so the requirements of both the long range and short-range aeroplanes could be addressed.

Recognising the potential of the revised fan configuration and putting in place the technology acquisition to enable it to be incorporated achieved this.

Figure 4 - Optimising Fuel Burn

The Trent 1000 Power Off-take System

The engine is the principal source of power for an aircraft. In addition to the prime function of providing thrust the engine also provides secondary power, electricity, hydraulic power and air for cabin pressurisation.

Conventionally, mechanical power is taken directly from the High Pressure (HP) System by a mechanical drive to an Accessory Gearbox (AGB) on the outside of the engine. This gearbox drives the electrical generators and hydraulic pumps needed to supply the aircraft and the oil and fuel pumps needed by the engine itself. Pressurised air is ducted from the core compressors at the appropriate pressure, cooled and introduced into the passenger cabin. The more air that is extracted the more aerodynamically stable the compressors become. The engine is started by rotating the HP system through the radial drive from an air turbine starter mounted on the AGB.

It has been recognised that there could be significant advantages by having a single energy source resulting in a simplified energy management system, the obvious one being electricity.

The 787 Dreamliner is a More Electric Aircraft (MEA). The implications for the engine are that the pneumatic systems are deleted for both cabin pressurisation and starting. Large starter /generators, again, mounted on the AGB, are powered from the engine and provide the starting capability.

An option would be to retain the current arrangement, drive the gearbox from the HP system and use the drive in reverse for starting. Extracting power in this manner means that the HP compressor is unable to sustain the pressure ratio required as the power requirements increase and is driven towards aerodynamic instability. To maintain stability margins the size of the engine core would need to increase but this reduces the engine efficiency and increases the fuel burn.

There existed conflicting requirements, the airframer's desire for simplified systems and the need for improved fuel consumption.

MEA had been the subject of an integrated study with the airframer over a long period of time, where various options for power extraction had been studied. As a result it was shown that taking power from the IP system where, although the IP compressor's ability to generate pressure ratio is reduced, it is restored by the HP compressor which moves along its normal working line and the IP moves into a more stable region.

This had a number of other significant benefits as in descent there was no requirement for handling bleed valves on the IP compressor and the descent idle power could be reduced. This resulted in up to 50% of the descent fuel burn is saved giving a 6% efficient fuel burn improvement relative to a conventional off take engine on the short range mission. To put this into context 1% of specific fuel consumption is worth about 1.2% emission fuel burn and the trends are for 1% improvement in specific fuel consumption per annum so this one change represents something like four years development of engine efficiency.

The issue of engine starting remained to be solved, as rotating the HP system is the only viable method, this was done using a fluid coupling, similar to a motorcar automatic transmission to engage the HP system during start and disengage for normal running.

There were other benefits that were not originally envisioned, the engine has enhanced starting capability and lower noise. Because the idle thrust was lower there was a reduction in aircraft brake wear.

This was a classic example of an indeterminate design task where the requirements and solution co-evolved and there was no clear process to a solution. This could only be achieved by close and open working with the airframer over a number of years and jointly defining the requirements.

Both the above examples built upon the architecture and heritage of previous products. The added value was to be able to exploit this and build upon it.

6. Summary and Conclusions

It is the designer's tasks to fully understand the customers, their needs, reconcile the conflicts and formulate a statement of requirements and not accept the requirements without question. They need to be aware issues outside the purely technical arena.

The designer generates the information, is aware of the consequences of design decisions and. should make those responsible for framing legislation and setting policy aware of those issues.

The designer needs to take the initiative in formulating capability strategies.

Clearly the challenges for the aerospace industry of customer expectations performance, cost, delivery and environmental requirements are varied, challenging and in many cases conflicting but are typical of many industries subject to the same pressures and drivers.

Above all designers need to be creative, eloquent and forceful in bringing new ides to fruition.

These photographs are reproduced with the permission of Rolls-Royce plc Copyright © Rolls-Royce plc 2004

1 Airport Trolley "The Airporter"

Design Brief

Clares MHE are a British company that designs and manufactures supermarket and airport trolleys. Clares currently have the British Airport Authority contract, with lucrative airports such as Heathrow and Gatwick, and there is thought to be considerable potential for growth in Clares' international airport trolley business. The market can be very competitive and product cost is a major concern.

Project Aim

Clares MHE wish to increase their share in the airport trolley market. In order to do this, they must present their trolley and service offering in a sales pitch. Our aim is to win sales pitches with our new product proposal.

Specification/Key Issues

A number of key points were raised by Clares MHE and other sources:

The trolley must comply with Clares current manufacturing policies

A flat pack trolley to allow a tighter packing density when shipping complete products or parts overseas

The trolley must incorporate "Deadman Brakes" a safety feature expected on trolleys by the airports

Achievements/Description of the Design

The design and strategy suggested offers a number of innovative features to add value to both Clares and their customers.

Fully Adjustable and Customisable Trolley: a study of an airport can be carried out to find information for trolley integration (e.g. corridor widths). The trolley can be tailored to this information and the airport's preferences

Airside Trolley Offering: a very small trolley can be produced for Airside (Departures Lounge/Duty Free). This will help the airport to produce extra revenue in its shopping facilities

Flat Pack: the trolley can be completely knocked down and supplied with different packaging options. It will then be assembled near the destination airport *Improved Maintainability:* all parts are modular and can be easily replaced on site. This is coupled with a maintenance check up every 6 months

Potential for Future Upgrades or Modules: The modular design allows for future designs to be added. Features such as RFID tags and LCD screens can be implemented

Push Pull Brake Controls: in order to improve the intuitiveness of the Deadman Brakes, a new mechanism has been designed to eliminate problems identified by airports

Designers:	O E I Banks, E Elias, A J Bull, A K Bullock, J James, K Hammoudeh	
Supervisors:	Dr E A Dekoninck, R D Jardine	
Sponsors:	Clares Merchandising Handling Equipment (MHE) Ltd	

MEng Group Business and Design Projects

2 - Islet Cell Cooling System

Design Brief

A relatively new technique for combating diabetes has been developed using islet cells taken from a donor pancreas. In order for the isolation of the cells from the pancreas to be successful, the process has to be carried out at approximately 4C whilst in a clean room. Our brief from Southmead Hospital in Bristol is to develop a system of cooling that can be applied to the current method of isolation, which allows the process to be undertaken in a clean room where there are strict cleanliness controls.

Specification/Key Issues

The isolation already has a standard procedure, which is currently being undertaken purely for research purposes. A make shift system of cooling has been employed to this procedure, which is suitable for the current laboratory environment but will not pass the guidelines governing the clean room which the isolation is being moved into. There are three key areas for which the current systems of cooling do not meet the clean room regulations, these have been labelled as: Cooling after heating, Agitation and cooling, and Centrifuge cooling.

The main limiting factor of all the designs, are that the clean room which the systems have to operate in, have a strict limit on the amount of particles that can be present in the air that is circulated through it. This becomes a particular issue as even water droplets are classed as particles, so strict control over condensation has been required. All equipment that operates in the room also has to undergo regular and thorough cleaning.

Achievements/Description of the Design

Solutions for the three key areas have been developed, as well as a system for centrally controlling the cooling and storing some of the other apparatus used in the isolation. Designs have been produced that will allow the systems to be manufactured and the isolation to successfully be moved into the clean room facility which has been recently built.

Designers:	O M Butcher, A R Featherstone, D T W Chan, N Delavouet, P J Gallagher, S D Smith	
Supervisors:	Dr J Darling, Dr D G Tilley	

Sponsors: Southmead Hospital, Bristol

3 - Pharmaceutical Manufacturing Project

Design Brief

To design a system to package a new drug under a nitrogen blanket.

Specification

Product X is a product in tablet form The product reacts to an air/oxygen atmosphere The product cannot be exposed to the open environment Product X must be packed under a nitrogen blanket The product is to be packed on a thermoformer The equipment is to be situated in a room with operators present Product X is to be packed into blisters with aluminium base and lidding foil Each blister is to contain seven tablets The thermoformer is to produce 100 blisters per minute

Key Issues

Supply of tablets to the line from a bulk container Operability Machine access Handling of rejected product Changeovers Cleaning

Achievements/Description of the Design

The design comprises of an enclosure around the existing machine, surrounding the sections where the tablets would be exposed to atmosphere. The enclosure is divided into sections independently supplied with nitrogen, and sealable from each other, so that when faults occur, specific sections can be isolated, and product contamination can be minimised.

Designers:	J B Patel, W Chu, A P S Collett, M L Corris, J S Cox, N J M Crawford
Supervisors:	Dr L B Newnes, Dr G Mullineux
Sponsors:	Eli Lilly

4 - LoBUS Hybrid Easy Access Urban Bus

Design Brief

Design a hybrid bus for use in urban areas. The bus must have a low-floor throughout its length, be free of steps and wheel intrusions.

Specification/Key Issues

Very compact rear suspension is needed to reduce wheel intrusion into passenger compartment.

Bus is designed as two modules:

2m Driver/Power module located at the front of the bus 10.5m Passenger module

Hybrid electric propulsion system

Crush Capacity:

41 Seated40 Standing2 Wheelchairs

For use in Europe

Achievements/Description of the Design

The bus satisfies the specification criteria, although the floor level had to be increased to 350mm to allow for the rear suspension components. A kneeling suspension was incorporated into the design to lower the floor level to the required 300mm for boarding/disembarking. Air brakes were used on the front axle and hydraulic brakes at the 12" rear wheels via an air/hydraulic actuator. The driver position is centrally mounted and raised above the engine components. This has major manufacturing benefits when considering left/right hand drive versions.

Designers:	F Flight, N R Hughes, C L Chan, A D Moorhouse,
	M Tschirk, J A Wilson

- Supervisors: Mr C A McMahon, Dr M J Darlington
- Sponsors: Eric Woodcock, Lo-Bus

<u>BUS</u>

5 - Integrated energy system

Design Brief

Design a carbon neutral system of energy production for the parish of Chew Magna fitting in with the aims and objectives of the Chew Magna Zero Waste initiative.

Design how the Mill in Chew Magna will be used as a focal point for the Chew Magna Zero Waste initiative.

Specification/Key Issues

The approximate average electricity consumption of Chew Magna is 1.5MW. The design considered the advantages and disadvantages of large and small scale energy production methods for various types of renewable technologies.

Feasibility of energy sources was based on community opinions, economic viability, environmental and infrastructural impact, power capability and cost. Following the feasibility study, the detailed design of selected feasible energy production methods was completed.

Achievements/Description of the Design

It was found that wind energy and hydroelectric turbines were the most feasible way of providing Chew Magna's electricity requirements.

The detailed design of the following was completed: Hydroelectric turbine on the weir outside the Mill A heat pump system at the Mill The renovation of the waterwheel at the Mill to produce electricity The electricity integration system at the Mill

- Designers: D J Godden, T P Holsgrove, L A S Martel, S Y Gan, J F Geyer, M Pott
- Supervisors: Prof G P Hammond, Dr J Darling

Sponsors: Chew Magna Village - John Pontin

6 - Multifunctional Hospital Bed

Design Brief

With the increasing age of the population the number of hip and knee replacements performed annually is increasing rapidly. The design brief is to combine the functionality of a hospital bed with that of an orthopaedic chair, specifically in order to aid patient recovery immediately following a knee or hip replacement. This ultimately will lead to a reduction in inpatient time following such procedures.

Specification/Key Issues

Perform fully functioning roles as both a bed and an orthopaedic chair Create a comfortable environment for the patient Provide a safe mechanism of movement for patients Create a psychological feeling of being mobile Reduce nurse workload Meet all current and future regulations

Achievements/Description of the Design

The multifunctional hospital bed is a system that incorporates all of the standard features expected on a modern hospital bed and the following additional systems:

Folding mattress which creates a comfortable chair Separate chair module and base station module; all actuation for the movement of the bed is housed within the base station The bed and base station split creating a lightweight chair on wheels which can be patient or nurse controlled Automatic docking system at the push of a button Clear and intuitive controls

- Designers: C J Holden, P F Giddings, B D Weekes, P Hooper, R J Howell, S R Hood, G J A Hamilton-Fletcher.
- Supervisors: Prof A W Miles, Dr D Sirkett
- Sponsors: Dr I Heyligers, Dr B Grimm Atrium Medisch Centrum (Netherlands)

7 - Zero Energy Basestation

Design Brief

A significant cost in the network deployment of basestations is the routing of a power supply to the site.

The requirement is for a renewable power system to be designed for a micro basestation, with all the power generation units and ancillary equipment to be integrated within the basestation infrastructure.

Micro basestations act as an 'underlay' for the macro network. They are of an output size typically used to provide shopping centres or major roads with a mobile phone signal.

Specification/Key Issues

Generate 340W of continuous power Global deployment (UK as worst case scenario for weather) Meet environmental conditions ETS 300 019-2-4 Budget of £15,000 for the product and full installation Solution to support the 2004 groups micro basestation Design for remote locations

Achievements/Description of the Design

A fully integrated 3890W rated wind/solar hybrid system which generates over 400kWh of power in the UK climate and can be deployed in even the most remote locations. For a cost of £13,000 the product offers the customer a neat and attractive solution, is fully self-sufficient and will allow mobile phone operators to increase their network coverage to areas previously financially and physically inaccessible. The product not only powers basestations but can be used for homes, off-shore platforms and water pumps.

Designers:	J M Low, J D Loudoun, D T E Kenning, O U Ogali, M A A Alias
Supervisors:	Dr S A MacGregor, J Cunningham, R G Outram
Sponsors:	Motorola

8 - Investigation to evaluate the most efficient form of human propulsion for a wheelchair

Design Brief

There is considered to be a need for a wheelchair that is comfortable for extensive use, lightweight and highly manoeuvrable. The key feature for the successful creation of such a design is thought to be that of providing a manual drive system that requires the minimum of effort and is convenient to use when negotiating confined spaces, as are found in the home.

Investigate the various human propulsion systems used (or could be used) for propelling a wheelchair and investigate their effectiveness. Compare with the capabilities and strengths of typical users and create an outline design scheme that either modifies an existing chair or provide a concept that is incorporated into a new design of chair.

Specification/Key Issues

The main requirements of the wheelchair are:

Comfort Safety Maximum mobility Minimum effort Maximum personal function Discrete design

Achievements/Description of the Design

The final solution is a wheelchair propelled using a mechanism similar to that found upon a rowing machine. The design is aimed towards users with C5/6 tetraplegia who only have limited use of their upper arms and are unable to propel a traditional wheelchair comfortably. Propulsion is through flexion of the elbow whilst pulling on a cord and braking is achieved by an inward movement of the arm, to squeeze a lever located by the elbow. The combination of these motions allows the user to propel themselves at speeds equal to that of a more able wheelchair user and lead an active lifestyle, where previously they may have be confined to an electric wheelchair.

Designers:	D M Phasey, J C Fowler, B M Walker, B J Thomstad, D A Hammond C A Nearchou
Supervisors:	Prof A J Medland, Dr R Mitchell, Dr R Orpwood
Sponsors:	BIME/University of Canterbury (New Zealand)

9 - ULTra Charging Project

Design Brief

Our sponsor company Advanced Transport Systems (ATS Ltd) is designing a new and innovative form of public transport, the ULTra Personal Rapid Transport (PRT) system. ULTra will run entirely on battery power and is designed to be self-sufficient. Our brief was to design an automated charging system, along with a levelling and weighing system for the ULTra vehicles.

Specification/Key Issues

Charging: The vehicle needs to be charged at a fast/opportunity charge whilst at the passenger stations, of 1-2C. Additionally, a slow charge of 5-10A should occur whilst at the depot. The system must offer an automated electrical connection between the vehicle and station, minimising human intervention. The possibility of on-board energy storage is to be considered.

Levelling: The vehicle should remain stable and at a constant level whilst at the passenger stations.

Weighing: The payload should be measured whilst passengers embark/disembark from the vehicle, to ensure maximum payload is not exceeded.

Achievements/Description of the Design

The project resulted in two main designs; one encompassing the charging/power system and the other, the levelling of the vehicle.

Charging

The charging system will operate both at the stations and depot. The system works by an actuator, mounted underneath the station, extending out and making a connection with the vehicle. Once in place the electrical supply is switched on and the battery is charged. As well as charging the battery the electrical supply also charges a bank of ultra-capacitors, which will aid the battery by powering the vehicle during initial acceleration. The charger has the capability to charge the batteries at both a high and low amp rating.

Levelling

The levelling of the vehicle is achieved through the use of an air spring suspension system. This necessitated a redesign of the current suspension used on the ULTra prototype and included a control system to regulate the stability of the vehicle. This system also has the ability to make an accurate readout of the payload, so negating the need for a separate weighing system.

Designers:	NGBurree, DCYLiow, CTPalmer, AJRoyle, MDSnell, A AYoung
Supervisors:	Dr D N Johnston, Dr P S Keogh
Sponsors:	ATS Ltd

10 - Autonomous Underwater Vehicle

Design Brief

To design an autonomous underwater vehicle (AUV) for entry into the AUVSI and ONR's 9th Annual International AUV Competition at San Diego in 2006. The competition consists of six underwater tasks to be executed in as quick a time as possible. Bonus points are awarded for various factors of performance and technical design. As yet no team has entered the competition from outside North America.

Specification/KeyIssues

The vessel must have a maximum weight of 63.5kg and dimensions no greater than 1.83 x 0.91 x 0.91m for competition entry It must be completely autonomous The vessel sensory payload must have the ability to detect a visual light beacon, a pipeline and box, and an acoustic beacon All tasks must be completed within 15 minutes The project is entirely self-funded, so any funding must come from sponsorship, either financial or in-kind

Achievements/Description of the Design

The design concept is a combination of several specialised sub-systems. All sensory payloads are modular, allowing for ease of location and increased flexibility.

Four thrusters were chosen to provide both propulsion and buoyancy control. A small power-pc manages the sensory system and controls the thrusters accordingly. The sensory system consists of two underwater cameras, four hydrophones, three depth sounders and a digital compass.

All components have been selected on a cost effective basis, without compromising the performance objectives of the mission. As a result, a sound base has been developed for future student groups to use as a springboard for further AUV design.

Designers: G S Waterhouse, A L Coxon, T J Ward, T J Rosenberger, R Sellen, R W Saunders

Supervisors: Dr W M Megill, Mr S J Culley

11 - Formula Student - Team Bath Racing

Design Brief

To design a small single seat racing car, adhering to the FSAE rules. The car will compete in the International 2006 Formula Student Competition. The newly formed Team Bath Racing will be the University of Bath's sixth entry into the competition.

Specification/Key Issues

The formula rules are clearly defined which provide the basis for a fundamental specification. The key restrictions are summarised below:

- The car must be open-wheeled with an open-cockpit
- The car must be powered by a four-stroke engine of no greater than 610cc
- The maximum cost of the car must not exceed \$25,000
- The car must accommodate the 5th to 95th percentile American male
- The noise produced must be below 110dB

In order to achieve superior competition performance, the car must deliver excellent handling, braking, acceleration and reliability.

Achievements/Description of the Design

Team Bath Racing has achieved an all new design philosophy of producing an extremely lightweight, manoeuvrable and drivable vehicle. The key features of the design include carbon fibre sandwich monocoque at the front locating the driver and other subsystems. The rear entails a steel space frame to allow easy access and exchange of engine.

The engine used will be a Yamaha WR450F with an optimised intake and exhaust producing torque exceeding 50Nm over a broad rev range. This is transmitted to the asphalt through a fully optimised semi-automatic transmission allowing gear changes in a tenth of a second.

To complement the powertrain, a front and rear push rod actuated suspension system is employed. Double unequal length outward diverging wishbones are used at the front and rear of the car. Rack and pinion steering with 100% Ackermann geometry is used in conjunction with 10" lightweight alloy wheels. On this model four independent brakes are employed to stop the car.

Dynamic analysis showed that the design should make use of the optimum wheelbase of 1625mm and a wheel track of 1125mm. As a consequence of Team Bath Racing's strict design philosophy, the projected mass is 170kg (excluding driver and liquids) which is the lightest by a substantial margin in the history the University of Bath's Racing Cars.

Team Bath Racing will also be developing the current 2005 car to enter into the Class 1 (200) series of the competition. The car will make use of a turbo charged Yamaha R6 engine driving through a continuously variable transmission. To reduce the weight of the car a structurally stressed engine will be installed.

Designers:	D Tavares Alves, J J H Berote, O G M Carless, D W Goose, N J Erhardt, J G Hair, M L Hellebrand, S J Hunt, S R Kallu, M A Knowles, A J Patterson, B W Plocki, N R Sandwith, A P C Winsor C Yim, G Woods
	C Thii, O woods

- Supervisors: Dr G W Owen, Dr K Robinson, Dr C J Brace, A Green, Prof J G Hawley, Prof D A Parker
- Sponsors: Castrol, Royal Navy, Perkins Engines Co Ltd, Nitron,

Aero A - 150 Seat Regional Turbo-Prop

Design Brief

With growing concern over the environmental impact of the aviation industry and the inevitable implementation of tax on aircraft emissions there is an ever growing need for a reduced fuel burning aircraft. A regional turbo-prop with a two class passenger capacity of 150 seats is to be designed.

Aims

The aim is to design an aircraft that meets the technical specification while assessing the profitability in the market. The business case aims to estimate project costing, reduce operating costs and determine the market into which this aircraft will be launched.

Specification/Key Issues

Minimise fuel burn and operating costs Cruise between Mach 0.68 - 0.82 Operating range of 3500nm (150 passengers) Take off and landing field length below 2400m and 1600m respectfully Comply with current EASA-25 aircraft regulations

Achievements/Description of the Design

The design of a conventional layout aircraft has been completed by the ten member team. The aircraft is capable of carrying 150 passengers 3500nm in a two class layout and 186 passengers >2400nm in a high density single class layout. The cruise Mach number for the aircraft is 0.75, based upon a compromise between fuel burn and operating costs. With a MTOW of ~66 tonnes the aircraft is capable of carrying 14.25 tonnes of payload the full 3500nm range. The use of modern materials has also been considered and this is seen by the use of composites in the wing structure and empanage.

Designers:	D Clark, D King, G Cranston, T Bell, T Alyalu, D Wang, S Gibson, M Burrows, P Murphy, I Idrees
Supervisors: (University of Bath)	Dr R Butler, Dr M Wilson, Dr G D Lock, Dr H A Kim, Dr M Carley, Prof I Gursul, Prof G W Hunt, Dr C W Stammers, Dr M A Sokola, Dr D GTilley
Supervisors: (Industry)	Prof J Jupp, Mr A Williams, Mr M L Jukes, Mr M Ball, Mr R Holliday, Mr C Stevens, Sir Robert Hill, Mr C Dressel, Dr J Crocker, Mr K Macgregor, Mr P A Chapman, Mr D Usoro, Mr R Davies, Mr R G Outram,

Technical Support: Airbus, Rolls-Royce, Dowty Propellers, Smiths Aerospace

Aero B - 150 Seat Regional Turbo-Prop: Enviroprop

Design Brief

In the context of the growing concerns over environmental issues a specification was set for an aircraft with reduced impact on the environment. The development of the high-power, high speed turbo-prop engines for the Airbus A400M may yield a possible solution to the reduction of fuel burn, albeit at slower cruise speeds compared to modern turbo-fan propelled aircraft.

The purpose of the study was to design a turbo-prop driven short-haul aircraft to meet regional airliner's requirements, whilst assessing the feasibility of such an aircraft by producing a business case.

Specification/Key Issues

The aircraft must transport 150 passengers in a two class layout a distance of 3500nm and 180 passengers in a single class high capacity layout a typical mission distance of 500nm. It must be a turbo-prop propelled aircraft capable of cruising between M0.68 and M0.82 with a maximum operating altitude of 41,000ft. The key driver of the design was the reduction of direct operating costs taking into account a predicted fuel price of \$2 per gallon at the entry into service date of 2012.

Achievements/Description of the Design

Enviroprop has a low wing and T-tail configuration with two turbo-prop engines. The maximum takeoff weight and operational weight empty of 64 and 34 tonnes respectively reflect the weight saving advantage of an all composite fuselage, wing box and empennage. Its cruise speed of M0.76 ensures that Enviroprop is at parity with the competition whilst reducing fuel burn and subsequent direct operating costs.

Designers:	D Worth, P Roberts, L Dunscombe, E Simpson, N Donaldson, G Lidher, A Ng, M Lema Trillo, R Gozalbo, B Woolf	
Supervisors: (University of Bath)	Dr R Butler, Dr H A Kim, Dr M Wilson, Dr I Gursal, Dr G D Lock, Dr M J Carley, Prof G W Hunt, Dr C W Stammers, Dr M A Sokola, Dr D G Tilley	
Supervisors: (Industry)	Mr M L Jukes, Prof J A Jupp, Mr P A Chapman, Mr A Williams, Mr D Usoro, Mr R Davies, Mr M Ball, Mr R Holliday, Mr C Stevens, Mr C Dressel, Dr J Crocker, Mr K Macgregor, Sir Robert Hill, R G Outram	
Technical Support:	Airbus UK Rolls-Royce Dowty Propellers Smiths Aero	

recnnical Support: Airbus UK, Kolls-Royce, Dowty Propellers, Smiths Aerospace

Aero C - 150 Seat Regional Turbo-Pror

Design Brief

With the increased focus on environmental issues there is a drive from within the civil aircraft market to dramatically reduce fuel burn. High-power, high speed turbo-prop engines are currently being developed for the A400M, these technological developments could offer airlines with a significant reduction in fuel burn. The purpose of this project was to design a turbo-prop driven, shorthaul aircraft, to meet the airlines' needs. The increased expense of slightly slower cruising speeds, will be off set by the fuel cost savings and Pollution taxes which have been projected. The aircraft is to be operated from small airports and therefore meet the noise and other operational constraints imposed by the relevant regulations.

Aims

The aim is to design an aircraft to the technical brief with the aid of business techniques to try and make the aircraft desirable to the airlines.

Specification/Key Issues

(1) The aircraft must offer 2 layouts, a 150 pax standard 2-class, 180 pax highdensity configuration, and be capable of a range of 3500nm with 150 pax + baggage. (2) Its economical cruising speed should be between 0.68-0.82M. (3) Aircraft must meet Stage 3minus 20 ENdB (cumulative) noise limits. (4) Allowances for technology improvements and environmental targets are projected to entry to service date of 2012.

Achievements/Description of the Design

Aircraft MTOW is 69 tonnes providing economical travel for 150 passengers over a maximum range of 3500nm. The aircraft will cruise at Mach 0.75 at an ICA of 31,000ft. The aircraft incorporates a high wing, conventional tail configuration and is powered by two advanced turbo-prop engines. The design utilises carbon fibre wing and fuselage structures reflecting advances in technology by the entry to service date of 2012.

Designers:	S Smith, T Hunt, M Burleigh, J Elliott, G Klimaytys, I Randles, W Renold, S Martin, T Fewster, J Tremain
Supervisors: (University of Bath)	Dr R Butler, Dr M Wilson, Dr H A Kim, Prof I Gursul, Dr G D Lock, Dr M J Carley, Prof G W Hunt, Dr C W Stammers, Dr M A Sokola, Dr D G Tilley
Supervisors: (Industry)	Prof J Jupp, Mr A D Heaton, Mr A Williams, Mr M Ball, Mr M L Jukes, Sir Robert Hill, Mr R Holliday, Mr R G Outram, Mr C Stevens, Mr C Dressel, Dr J Crocker, Mr K Macgregor, Mr P A Chapman, Mr R Davies, Mr D Usoro
Technical Support:	Airbus UK, Rolls-Royce, Dowty Propellors,

byce, Dowly Prope Smiths Aerospace

Project Sponsorship 2004-2005

Our most grateful thanks and acknowledgements are due to the companies listed below for proposing and sponsoring this year's design projects. The financial support and equipment which they have provided have been crucial to the success of the projects, and the encouragement and insight of their staff have been highly valuable to our students.

Clares Merchandise Handling Equipment (MHE) Ltd Southmead Hospital, Bristol Eli Lilly and Company Limited Eric Woodcock - Lo-Bus Chew Magna Village Jon Pontin Atrium Medisch Centrum (Netherlands) Motorola Ltd Bath Institute of Medical Engineering University of Canterbury, New Zealand ATS Ltd Castrol Consumer Royal Navy Perkins Engines Co Ltd Nitron Racing Systems Ltd Mocal Oil Control Systems **Ricardo Engineering** IMechE/SAE **Berkeley Stainless** Green Tweed and Co Ltd Airbus UK Rolls-Royce plc **Dowty Propellers** Smiths Aerospace

The Smallpeice Trust

We continue to acknowledge the contribution of the **Smallpeice Trust** who for many years have funded a Design Prize. More importantly they enable the Design Projects to be externally assessed by Senior Engineers from Industry. This acts as an invaluable quality and reality check. The considered feedback from the assessment teams over the years has been invaluable.

Integrated Industrial Projects (IIP)

Integrated Industrial Projects (IIP)

The Integrated Industrial Project is a design-based project undertaken in local industry over a six-month period from March to August.

Typically ten third year students choose this option each year instead of the full time group design project.

Due to the timing, they do not exhibit their work at the Design and Project Exhibition.

This year's IIP Students are:

United Kingdom

Company	Supervisor
Rolls-Royce	GDL
Atkins	CAM
HCL Fasteners	GWO
Reed Hycalog	FAO
BMT	WMM
	Company Rolls-Royce Rolls-Royce Rolls-Royce Rolls-Royce Rolls-Royce Rolls-Royce Atkins HCL Fasteners Reed Hycalog BMT

France

Student	Company	Assessor
Knoerzer, D	SNR, Annecy	PSK
Kuhr, T	Numeca International, Brussels	MW

2005 Engineering Projects Undertaken at the University of Bath

Student	Title	Group	Supervisor
Abberley, J	Design of a consumer product for	DM	GWO
	campers		
Waking up inside	a tent on a sunny summer morning can	be uncor	nfortable,
due to the high ter	mperatures which often occur. This pro-	duct uses	solar
energy to power a	small fan which introduces cooler outs	side air to	the tent
interior, reducing	the temperature to a more comfortable	level.	
Allen, S	Pointing a person-powered punt	MS	PSK/ WMM
The Bath Univers	ity Racing Submarine Team (BURST)	is intendi	ng to
enter an Internatio	onal time-trial sprint event held in Bethe	esda, U.S	. in June
2007. This project	t involved the production of a boat that	was used	l as a test
bed to illustrate th	e development of an autonomous contr	ol system	n for
future application	to the HP submarine.		
Andrews, T F L	Chains that are weaker than their	SB	GWH
	'weakest link'		
In the 15th Centur	ry Leonardo da Vinci performed a serie	s of tensi	on tests,
the results of which	ch counter classical engineering theory	that the b	reaking
strength of a wire	is independent of its length. This projection	ct uses bi	-stable
models to attempt	to show such results by including distu	irbances i	in the
system.			-
Anthony, J	Viscoelastic convective flows in	AA	DASR
	porous media		
The onset and dev	velopment of oscillatory convection of a	a viscoela	stic fluid
saturating a horizo	ontal porous layer was investigated. The	e governi	ng Darcy -
Benard equations	were modified with stress relaxation an	nd strain r	etardation
parameters. Linea	ar theory and numerical results were co	mpared w	vith those
for Newtonian flu	ids. Applications include geophysical f	lows, the	recovery
of crude oil and th	ne modelling of biological fluids.	1	1
Aufranc, D	Thermal performance of hyd-	MS	DGT/
	raulic accumulators		RFN
Hydraulic accum	lators are devices to store energy in the	e form of	gas under
pressure and are v	videly used in fluid power applications	such as v	ehicle
suspension. But d	uring the gas compression and expansion	on some l	neat is lost
by heat transfer. T	The aim of this project is to do a model t	to predict	this
energy loss and to	validate it by experiments.		
Azaime, H S	A finite element model of tissue	SB	SEC
	heating caused by diagnostic		
	ultrasound scan		
A finite element (FE) model has been developed using an	1 FE pack	age called
ANSYS to predic	t skin and tissue surface temperature ris	e when the	ansducer
was in contact wit	th standard tissue phantom. The temper	ature prec	lictions
produced from the	e model were validated against the expe	erimental	data
provided by the Medical Physics Department, RUH.			

Student	Title	Group	Supervisor
Bell, M P	Automatic balancing of shafts	MS	PSK
	that rotate both above and below		
	their critical speed		
An investigation i	s conducted into automatic methods of	balancing	g super -
critical rotors, wit	hout compounding imbalance at sub-cr	itical spec	eds. The
investigation cons	iders both existing methods and new m	ethods, p	roposed
during the project.	. The production of a test-piece and sup	er-critica	l rig, for
the assessment of	one proposed automatic balancer, is als	o include	ed.
Bennett, D W	Autonomous grapnel robot	SB	JFVV
The main aim of t	he project was to design an autonomous	s grapnel	robot that
uses an elastic me	chanism to fire a grapnel hook and drag	g itself as	its main
form of locomotic	n.		
Bhudia, N	Effect of a jet on vortex merging	AA	IG
The purpose of the	is experimental based report is to invest	tigate the	effect of
a jet on vortex me	rging at low Reynolds numbers. A pair	of co-rot	ating
vortices is formed	on actual aircraft during landing config	guration.	This
phenomenon has 1	major imparts with regards to aircraft la	nding sej	paration
distance. Therefor	e the findings of this report provide a f	urther ins	ight
within this field of	f research.		
Bickerton, J	Bath driving cycle and character-	AA	JGH/SA
	istic vehicle emissions estimation		
Traffic motion wit	thin the City of Bath was surveyed with	a vehicle	e and a
driving cycle was	produced to represent this data using be	est fits of	the
acceleration/speed	l profiles of data sectors between stops.	The driv	ing cycle
was then tested fo	r repeatability and the emissions compa	ured to a s	statutory
cycle, using the cl	assis dynamometer at the University of	f Bath.	
Blanch, R	The Biefeld-Brown effect?	AA	SAM
	Electro-kinetic thrust		
The force on an as	symmetric capacitor charged to an extre	mely hig	h voltage
was explored from	n various theoretical perspectives, altho	ugh the p	rimary
goal was to resear	ch ion cloud theory. A finite difference	model wa	as built,
and thrust seen pa	rtly in the expected range, but many res	sults rema	in
inconsistent with a	reality.		
Boorman, T	Highly manoeuvrable electrically	MS	CWS
	powered wheelchair		
This project conce	erns the analysis and control of a novel	wheelcha	ir being
developed at BIM	E (Bath Institute of Medical Engineerir	ıg). This v	will
enable users to ma	moeuvre in restricted spaces or to use the	ne chair f	or
sporting activities.			
Bowley, P	Ctenobot Propulsor	SB	WMM
The Ctenobot is an	n AUV designed to study kelp beds that	uses kni	fefish
inspired fins for propulsion. This report has modelled the motion of these			
fins based on a file	m study of the fish and a computer simu	ulation. It	has been
found that the fish	use a rounded triangular wave for prop	oulsion.	

Student	Title	Group	Supervisor
Brambles, O J	The entrainment of a free con-	AA	DASR
	vection plume by a neighbouring		
	surface		
An investigation i	nto the effects a nearby surface has on a	a free con	nvection
plume located in a	a porous material. Numerical methods v	vere used	l to solve
the governing equ	ations. Detailed analysis was performed	d into hov	w the
Rayleigh number	and heat source position influence the p	olume de	velopment
and entrainment to	owards the surface.		
Brown, A I	Trends in energy consumption	AA	GPH
·	and carbon dioxide emissions		
	associated with UK non-domestic		
	buildings		
This project ident	ifies the past, present and future energy	consum	tion and
carbon dioxide en	nissions attributable to the UK's 2 million	on non-de	omestic
buildings. Model	ling typical buildings and simulating ne	w techno	logies
provides a detaile	d assessment of future scenarios and bu	ilding rea	gulation
development.			
Burls, A	The effect of span-wise flexibility	AA	MJC/
	on thrust performance from		WMM
	flapping wings		
An experimental i	nvestigation was undertaken using thre	e wings o	of
different span-wis	e flexibility. The wings were flapped in	n a water	tunnel at
varying frequenci	es and Reynolds numbers. It was found	l that spa	n-wise
flexibility can be	beneficial to thrust generation but there	is a depe	endency on
wing stiffness and	the operating parameters.	1	5
Butler. LA	Incorporating human attributes	DM	ARM
	into manufacturing simulation		
Manufacturing sir	nulation is one of the most commonly u	ised tools	to aid the
facilities planning	process. However as less deterministic	element	s such as
humans are incorr	porated, problems with the model accur	acv arise.	This
study looks at the	possibility of incorporating human attr	ibutes in	simulation
to reduce this inac	curacy and the user's uncertainty.		
Calvert-	Review and application of energy	DM	FHO
Brown, A	absorption/dissipation techniques		
Energy absorption	applications range from traditional sho	ock absor	bers to
train buffers and a	nti-earthquake mechanisms. This proje	ect provid	les an
overview of many	different energy absorption techniques	and exa	nines. in
detail the construction of hase isolation devices that are used in earthquake			
protection devices Plastic deformation techniques that have the property of			
absorbing large energies were proposed as a replacement to current			
methods	G		-

Student	Title	Group	Supervisor
Carrington, AW	Analysis and testing of sandwich	SB	GWH
	structures in compression		
Sandwich structur	es are composite panels consisting stro	ng thin o	uter faces
separated by a thic	ck lightweight core. The project looked	to invest	igate the
response of alumin	nium and expanded polymer foam sand	wiches in	n
compression, to id	lentify the possible failure modes and the	ne behavi	iour of the
structures in the bi	uild up to failure.		
Clement, P J	Is the internal architecture of	SB	JLC/
,	bone structurally optimised?		HAK
The human desire	to maintain activity levels demands the	e function	nal
maintenance of the	e skeleton. Consequently a detailed un	der-stand	ling of
bone mechanics co	onsidering the interrelation between bo	ne forma	tion and
environ mental co	onditions is required. This project applie	s structu	ral
optimisation meth	ods using finite element analysis in ord	er to inv	estigate
the internal structu	ure of cancellous bone.		0
Cooke, A L	Development and implementation	SB	JLC
	of suitable pass/fail criteria for a		
	loose prosthesis as determined by		
	vibration testing		
Vibration testing,	based on past research, was carried out	on simp	le models
of bone and femor	ral prosthesis system. Theory suggests t	hat the s	vstem will
produce differing	harmonic responses at various stages of	f loosenii	ng. The
test results were th	hen used to set out criteria that can be u	sed to ac	curately
detect loosening b	y non-invasive means.		5
Corrigan, J	Study of air filtration for a	AA	SAM
0 /	cellular basestation application		
An investigation in	nto filter test methods and environment	al model	s to
An investigation in establish an effect	nto filter test methods and environment ive filter performance model able to pro-	al model edict filte	s to er change
An investigation in establish an effect frequencies in real	nto filter test methods and environment ive filter performance model able to pro- l operating environments.	al model edict filte	s to er change
An investigation in establish an effect frequencies in real Costa Cunha e	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of	al model edict filte FS	s to er change
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car	al model edict filte FS	s to er change
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf	al model edict filte FS ormance	s to er change KR of a
An investigation in establish an effect. frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand w	al model edict filte FS ormance here the	s to er change KR of a weight
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand we see cars and how to best exploit the lack	al model edict filte FS ormance here the of rules	s to er change KR of a weight regarding
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the their minimum we	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand we see cars and how to best exploit the lack eight.	al model edict filte FS ormance here the of rules	s to er change KR of a weight regarding
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the their minimum we Crichton, C	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand w use cars and how to best exploit the lack eight. Pressure transients in pipes	al model edict filte FS ormance here the of rules MS	s to er change KR of a weight regarding DNJ
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the their minimum we Crichton, C This project involve	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand w ese cars and how to best exploit the lack eight. Pressure transients in pipes yes the development of an unsteady frid	al model edict filte FS ormance here the of rules MS etion mod	s to er change KR of a weight regarding DNJ del for
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the their minimum we Crichton, C This project involve pressure transient	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand w ese cars and how to best exploit the lack eight. Pressure transients in pipes ves the development of an unsteady frid under turbulent flow conditions. The f	al model edict filte FS ormance here the of rules MS etion mod	s to er change KR of a weight regarding DNJ del for model
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the their minimum we Crichton, C This project involve pressure transient was subsequently	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand w ese cars and how to best exploit the lack eight. Pressure transients in pipes ves the development of an unsteady frid under turbulent flow conditions. The f incorporated in a computational model	al model edict filte FS ormance here the of rules MS etion mod rictional for press	s to er change KR of a weight regarding DNJ del for model sure
An investigation in establish an effect frequencies in real Costa Cunha e Almeida, D Analysis into the e Formula Student c comes from in the their minimum we Crichton, C This project involve pressure transient was subsequently transient using the	nto filter test methods and environment ive filter performance model able to pro- l operating environments. Study into weight management of a Formula Student car effect of weight and inertias on the perf car. With the aim to better understand we see cars and how to best exploit the lack eight. Pressure transients in pipes ves the development of an unsteady friduinder turbulent flow conditions. The fincorporated in a computational model emethod of characteristics approach. E	al model edict filte FS ormance here the of rules MS etion mod rictional for press xperime	s to er change KR of a weight regarding DNJ del for model sure ntal

Student	Title	Group	Supervisor
Crump, S	Variable Valve Timing for a	FS	KR
	Formula Student Racing Car		
This project invol	ves testing of a VVT camshaft phasing	device cu	istom
made for a Honda	CBR motorcycle engine to determine n	nechanic	al
stability, accuracy	of camshaft phasing and performance	benefits o	of such a
system. It also in	volves the preparation of a BURT car to	be dyna	mometer
tested with the VV	/T engine.		
Cubitt, A	Tennis ball pressure chamber	SDP	ANB
	_		
pump'n'bounce			
Due to the permea	bility of rubber, the air within the cores	s of tennis	s balls
gradually seeps ou	it making them lose their bounce. By s	toring ter	nnis balls
in a pressurised co	ontainer, this leakage rate can not only b	be slowed	l down but
reversed, thus rest	oring the bounce. Experimental proceed	lures wer	e able to
provide the proof	that was lacking for the efficacy of this	techniqu	e and
emphasis was place	ced on user-centred design to design the	e product	
Dailey, S	Making wood out of sensible	DM	AB
	materials		
The project involves research into using a fibre winding machine to create a			
material with simi	lar mechanical properties to those seen	in wood.	Testing
of the material wi	ll produce results that can be compared	to those	of natural
wood.			
Davies, M L	Technical development / manage-	FS	GWO
	ment of a formula student team		
This project is spl	it into four sections; inboard suspensior	n calculat	ions on
this year's formul	a student car, final drive analysis on las	t year's c	ar, driver
assessment and se	lection for the 2005 formula student co	mpetitior	n and
project manageme	ent of the team. The work carried out ir	ncluded th	ne design
of adjustable anti-	roll bars and selection of a new final dr	rive ratio.	Methods
for driver selectio	n were proposed and management detail	led.	
Deighan, T	Engine performance modelling and	FS	JGH
	valve-train design		
Engine modelling	: continued development work of the Ya	amaha Ré	5 WAVE
model for the For	mula Student competition, with improv	ed valida	tion
against additional	test data. Valve-train design: developm	nent of va	lve-train
system design and	l analysis software, to provide an easy t	o use log	ical
program for the de	esign and analysis of valve-train system	is. Includ	ing
prediction of com	ponent stresses, valve jump, spring surg	ge and lub	orication
limitations.			

Student	Title	Group	Supervisor
Denness, W	Measuring the variance in grip	SMM	ANB
	force applied to a tennis racket		
	handle as a consequence of		
	racket-ball interaction during		
	service		
Lateral epicondyli	tis may be attributable to reduction in te	ennis racl	ket
control; a consequ	ence of the modern game, and the desig	gn of the	racket
handle relative to	the player's hand. Changes in the princi	ipal gripp	ing forces
applied to a tennis	racket as a result of racket-ball interac	tion durin	ng service
were measured.			
Dickinson, J P	The suspension crutch	SB	AWM/ HCT
The crutch is an ad	ccepted method of enabling a patient with	ith ambul	atory
problems to regain	n mobility. However many patients find	l crutch a	mbulation
both painful and e	xhausting. The aim of this project is to	develop a	and test a
crutch that will en	able prolonged, pain free, crutch ambul	ation.	
Douache, F	Virtual reality simulation	MS	DGT/ DNJ
This project is abo	out exploring the uses of the virtual real	ity suite	in the
University of Bath	. Two different simulations were prepa	red; these	e include
an anatomy simula	ation for a skeleton model and a simular	tion for a	fuel
testing rig that wil	l be built in the power transmission lab	. Part of	the project
activity was to pre	pare a concise marketing plan for the V	R suite.	
Drayton, P	Test facility for the evaluation of	SB	AWM/
	tendon repair techniques		JLC
Tendon repair rem	ains one of the greatest challenges in su	urgery. V	Vhile
many techniques h	nave been developed, an optimum solut	ion rema	ins elusive
and varied method	ls of experimental comparison make sel	lection di	fficult.
This project follow	vs the development of a methodology a	nd test fa	cility and
evaluates their per	formance against published data.		
Dubois, G	Flexible manufacturing systems	DM	ARM
	and buffer strategies		
A flexible manufa	cturing system (FMS) is designed to co	mbine hi	gh
productivity and p	roduction flexibility. The first aim of th	is projec	t is to
settle down a meth	nodology for the design and planning or	f FMS. T	his project
also presents a buf	ffer strategy that can be achieved in ord	er to opti	mize a
production line, or	vercoming to problems like breakdowns	s or bottle	enecks.
Eaton, R L	Determining the environmental	AA	GPH
	footprint of Wiltshire & Swindon		
This project aims	to determine the environmental footprin	nts for the	e local
areas of Wiltshire	and Swindon. The environmental footp	print is us	ed to
provide an indicat	ion of sustainability for a defined popul	lation and	l is based
on the consumptio	n of resources. It ultimately measures t	he pressu	ire of
humanity on global ecosystems.			

Student	Title	Group	Supervisor
Ebling, D	Developing a new jointing tech-	SDP	EAD
	nique to improve the manufacture		
	of wheelchairs and trikes in devel-		
	oping countries		
Motivation assists	local partner organisations to supply su	uitable w	heelchairs
to the huge number	er of disabled people in the developing	world wh	0
desperately need t	hem. Current frame fabrication techniq	ues are la	ıbour
intensive, limiting	productivity and quality. This project	details th	e
development and	testing of alternative fabrication method	ds for stee	el tubular
frame.			
Farrar, P N	Optimisation of a diesel engine	MS	JD/KR
	for the Shell Eco-Marathon		
The Shell Eco-Ma	arathon is a competition held annually the	hroughou	t the
world where parti	cipants aim to achieve the most miles p	er gallon	of fuel.
The University of	Bath has a long standing pedigree in th	is compe	tition, and
participates in a n	umber of fuel classes. The purpose of th	nis projec	t is to
continue the deve	lopment of the diesel engine in preparat	tion for c	ompetition
in July.			
Fell, A	Non-linear analysis of frame-	SB	RB/
	works for morphing wings		GWH
Structural morphi	ng, or shape control, of aerodynamic co	mponent	s can
potentially offer s	ignificant improvements in performance	e, for exa	imple, by
altering wing shap	be to reduce drag during the various stag	ges of cru	ise. This
project seeks to es	stablish capabilities for analytical mode	lling of n	ovel
structures that ach	lieve shape change by actuation from or	ne stable	state to
another.			
Fenton, C T	Development of a finite element	AA	HAK/
	procedure for thermal/structural		MW
	optimisation of a turbine disc		
Optimisation is th	e process by which the shape and topol	ogy of a s	structure
is modified accord	ling to defined design objectives by an	algorithn	n that
finds the optimum	design solution. By optimizing the tur	bine disc	structure
the thermal efficie	ency and stress efficiency of the structur	e increas	es whilst
achieving minimu	m weight.		
Garcia, P	BURT 4 handling analysis to	AA	CJB/JD
	include instrumentation		
The investigation	included setting up BURT04 (the Unive	ersity of l	Baths
2004 entry to the	formula student competition) with varie	ous senso	rs, ready
to carry out 4 diffe	erent tests to produce objective data rela	ating to th	ne
vehicles dynamic behaviour. From this data, and driver perception of the			
quality of the veh	icles handling performance, an attempt	at making	g links
between objective metrics and subjective assessments was made.			

Student	Title	Group	Supervisor	
Goodwin, C G	Computational fluid dynamics	AA	MW/	
	study of a diffuser ventilation		DGT	
	system			
An experimental p	project was undertaken in 2004 to inves	tigate the	airflow	
through a HVAC of	liffuser. A large amount of data, both q	ualitative	and	
quantitative, was	produced during the investigation. The	aim of th	nis project	
was to complete a	computational fluid dynamics validation	on of the	results	
obtained.				
Gordon, S D	Ultrasonic evaluation of cartilage	SB	JLC	
Cartilage damage	is an increasing problem in the western	world w	ith a	
growing number of	of people suffering from arthritis. All ex	isting me	thods of	
assessment either	risk causing more damage or are only u	iseful at a	late	
stage, ultrasound	offers the possibility of assessing the ca	rtilage sta	ate in a	
rapid, non-invasiv	e fashion.			
Greaves, C C	Near field interaction of a	AA	IG	
	simulated engine jet with wing tip			
	vortices			
The study using fl	ow visualisation and flow measuremen	t is to inv	restigate	
the near field inter	action of a simulated engine jet with a	wing tip	vortex in	
order to access the	e potential for enhanced vortex dissipat	ion, with		
application to min	imizing the vortex hazard around comm	nercial ai	rports.	
Grunfeld, T M	Design of a safety device for horse	SDP	GWO	
	owners			
The market resear	ch, design and prototyping of a device	to aid a "o	cast"	
horse when stable	d. The project also looks at other proble	ems conc	erning the	
lifting of other sin	nilar sized, injured or downed animals s	such as ca	ttle. The	
device is designed	to be applicable to both of the scenario	DS.		
Gun, WA	Non-linear dynamics in contact	MS	PSK	
	conditions			
Investigation of th	e characteristics of rotor displacement	in a rotor	auxiliary	
magnetic bearing	(AMB) system at the point of contact w	vith an au	xiliary	
bearing. Simulation	ons were undertaken by using an existin	ig develoj	ped model	
based upon a flexi	ble rotor/magnetic bearing system. Mo	dificatior	is will be	
made to the mode	l to produce better and more accurate p	redictions	s.	
Simulink software	e in conjunction with the Matlab progra	mming la	nguage	
will be use to set u	up or modify the existing model.			
Hackett, J	Innovative pharmaceutical pack	SDP	GM	
	providing benefits to consumer			
	and process to manufacture			
Pharmaceutical pa	ckaging has changed little in decades.	Much is u	insuitable	
for use by the elde	erly or people with limited dexterity and	l informa	tion	
provision is basic. This project aims to design a novel pack, providing				
consumer benefits	consumer benefits, after which a machine concept will be designed and			
animated to show the process.				

Student	Title	Group	Supervisor
Hamilton, M	Airflows through a diffuser for	AA	SAM/
	an HVAC application		DGT
Displacement ven	tilation systems utilise the buoyancy of	hot air, t	o provide
comfort and venti	lation for occupants. Audience Systems	s offer	
displacement vent	tilation for auditoriums via an expensiv	e under s	eat unit. In
this experimental	investigation alternative methods of un	der seat a	ir
diffusion were inv	vestigated and potential design changes	recomme	ended to
Audience System	s.		
Harris, C P	Micro air vehicle wing morphing	AA	IG
Investigation into	the flight dynamics of span-wise camb	ered delta	a wings
can determine the	aerodynamic advantages and methods	of contro	l already
seen in bird and in	sect flight, and with technological adv	ances in a	daptive
materials and shar	be memory alloys, morphing wings are	set to be	come a
fundamental deve	lopment for micro air vehicles.		
Harvey J	Global energy absorption	SB	JFVV
IIIII vey, o	through local compliance control		01
The project is an a	experimental investigation into the effect	ts of hol	es in
tracing paper on t	ensile energy absorption. The aim was t	to discove	or whether
the localised plast	is damage caused by holes could be uti	lised to it	
anargy absorption	The research has notential application	in onor	ici case
absorption materi	al technology	s in energ	gy
	Design and finite element enclusio		II A IZ/
Hawker, J	Design and linite element analysis	AA	ПАК/ WMM
The project uses f	of a submarine num		nothods of
The project uses I	mile element analysis to examine and c		head on
the next te	inposite submarine siten, and conclude	s a design	l based on
the results.		CD	DD
Helliwell, J M	Fuselage structural design for	SB	KB
	next generation aircraft	• •	• 1
This project prese	nts a structural concepts study of non-c	circular pi	essurised
fuselage configura	ations for blended wing body (BWB) an	rcraft wit	h an
emphasis on an 'c	ppen-cabin' structure.		
Hicks, A	Commercialisation of UREAD	DM	FHO
Dr F Osmon (Uni	versity of Bath) has invented a universa	al re-usab	le energy
absorption device	(UREAD) that offers advantages over	traditiona	l devices
in a variety of app	plications. The scope of this project is to	o devise a	
commercialisation	n strategy, identify the most suitable app	olications	and
begin the commen	cialisation process.		
Hopcroft, A	Design optimisation of MCP	SB	AWM/
	finger joint prosthesis		DMS
The project entail	ed creating a solid model of an existing	design. 7	The design
was altered to allo	ow for a more anatomical motion during	g flexion	of the
hand Finite element analysis was used to ensure that the changes decreased			
nanu. T mnc ciem	ient analysis was used to ensure that the	changes	decreased

Student	Title	Group	Supervisor
Hughes, J	RoboMinnow Project - Phase 1	SB	WMM
RoboMinnow project will design and build a prototype miniature AUV that			
is inspired by the	way fish swim and their muscular-skele	etal physi	ology.
Phase 1 of the pro	ject comprises conceptualisation, desig	n and init	tial
experimentation b	ased on the application of artificial mus	scle.	
Hunt, A	Formula Student car handling	FS	JD/JLC
	analysis		
In order to establi	sh the handling of the BURT04 Formula	a Student	car the
vehicle was instru	mented as part of this project. Steady s	tate hand	ling tests
were undertaken a	and the under-steer and over-steer chara	cteristics	were
measured. The ef	fect on handling of roll-bars front and r	ear was r	neasured
and compared wit	h driver qualitative responses. Followin	ig this wo	ork it was
possible to recom	mend changes to the suspension set-up	that would	ld improve
the handling chara	acteristic.		
Isaac, T	Model mark-up in computer	DM	CAM
	aided design		
This project conce	erns the area of mark-up and 'user inter-	face lang	uages',
which were used i	in the form of application programming	interface	es to
attach persistent la	abels to parts of CAD designs. Once m	arked up	, CAD
geometries were u	used for practical applications, such as d	lriving	
manufacturing and	alysis and finite element analysis.		
Jackson, O	Rajiform drive	SB	WMM
Design and build	of a deformable fin, replicating the pect	oral fin o	fa
Stingray. Testing	will be performed on the various wave	s the mod	lel will be
capable of produc	ing, as an investigation into the incredit	ole propu	lsive
efficiency of fish-	like swimming.		
Jaddou, M	Autonomous biomimetic drill	SB	JFVV
Growing interest	in extraterrestrial subsurface exploration	n has pro	mpted an
examination of ad	vanced penetration and drilling technol	ogies to s	ample
geophysical data.	This report tries to draw inspiration from	m nature	(Sirex
Wood Wasp) to de	esign, analyse, develop and produce an	autonom	ous drill
probe for use on p	lanetary missions.		
Jeffery, M A	Installation, testing & modelling	FS	DNJ/
	of a Rotrex SP30-64 supercharger		GWO
	on a Yamaha YZF R6		
The need to increa	ase power output on the engine of the B	URT05 r	ace car
has lead to the dev	velopment of a supercharger installation	1 for the V	vehicle. It
is the first time th	is method has been used so testing and	modelling	g of the
engine are require	d to provide a reliable package that ben	efits the	
performance characteristics of the vehicle			

Student	Title	Group	Supervisor
Jervis, R F W	Unsymmetric composite laminates	SMM	CRB
	with embedded piezoceramic		
	actuators		
The focus of the w	vork completed in this project was the p	ossible s	tructural
control of unsymm	netric laminates, using piezoceramic ac	tuators, f	or use as a
new type of adapt	ive structure. The specific area of intere	est being	the snap
through behaviour	observed, between the laminates stable	e states, v	vhich are
generated from di	fferences in the materials thermal expar	ision coe	fficients
during the cure cy	cle.		
Jones, J L	Rotational reusable energy	DM	FHO
	absorption device investigation		
This project invest	tigates the performance of a reusable er	nergy abs	orption
device designed by	y Dr. F. Osman, in the University of Ba	th. The d	evice
uses material defo	rmation to absorb energy, caused by ex	truding a	material
through a die. The	project investigates its performance us	ing differ	rent
materials in the de	formation process.		-
Ladd, R	Jumping robots and the Mantis	SB	JFVV
	Shrimp click mechanism		
This project was in	ntended to develop a method of locome	otion for a	a robot to
traverse a Martian	landscape, looking to nature for inspira	ation and	focusing
on elastic mechan	isms. Due to the mantis shrimps excep	tional per	rformance,
the project focus r	noved to simulating the click mechanis	m in this	animal, a
punching strike.			
Laughlin, J D	Adventure racing tent design	SMM	MPA
Design of a new te	ent to accommodate two persons, with t	ent mass	of less
than one kilogram	. Novel suggestions made to alleviate p	roblem o	f
condensation and	tent mass, whilst retaining adequate she	elter from	ı harsh
weather condition	s. Simplicity deemed to be key but inno	ovative ha	atch panel
used to allow occu	apants improved levels of comfort and e	ease of us	se.
Lloyd, P	Self excited roll oscillation of	AA	IG
	delta wings		
Self excited roll of	scillations or wing rock cause loss of co	ontrol on	highly or
moderately swept	delta wings. Using round and sharp-ed	ged delta	wings,
this experimental	project studies the variation of primary	vortex	
reattachment, lead	ling edge flow characteristics and the pe	ossible ef	fects of
sound on leading	edge shear layer stability.		1
Manning, C	The application of the digging	SB	JFVV
	mechanism of the Locust		
	Ovipositor to the design of a		
	deployable biomimetic excavator		L
An investigation of	of the applicability of the locust oviposi	tor as a b	iomimetic
design basis for a	drill to be used in space exploration, an	d the fea	sibility of
such a drill. The p	roject involved examination of locust s	pecimens	, 2D
model testing and numerical analysis on the ovipositor as an excavator.			

Student	Title	Group	Supervisor
Marsh, W G A	Racing sit-ski design/optimisation	SDP	JD
This project aims to improve the performance of a sit-ski currently used by			y used by
a member of the British Adaptive Ski Team for racing in Paralympic			
competitions. The	e suspension mechanism and weight red	duction w	vere
identified as the k	ey areas for development. A new sit-sk	i frame a	nd
suspension system	n design has been proposed.		
Mitchell, M	Bioreactor for tissue engineering	SB	SG
Tissue engineerin	g can provide functional tissue grown in	n vitro. F	or
successful tissue	engineering a bioreactor is required to p	rovide a	controlled
environment, with	n regards to biochemical, physical and n	nechanica	al
conditions. The ai	m of this project was to develop a biore	eactor to f	facilitate
the tissue enginee	ring of anterior cruciate ligaments.	1	
Mohd Yin, M	Development of semi automated	SB	SEC
F	procedure for conversion of CT		
	scan data into a solid model		
To develop a tech	nique for the semi automatic construction	on of a sc	olid model
from CT data. It i	s intended that the model can be used for	or finite e	lement
analysis. A numbe	er of procedures and algorithms are perf	formed us	sing
MATLAB image	processing toolbox for visualisation and	d manipu	lation of
the data.			
Monaghan, T	Design and testing of composite	SB	RB
	primary wing structure: Invest-		
	igation of stiffener shape and		
	material properties on structural		
	performance under compressive		
Q C 1 C 1		· · 1	
Careful manufact	ure and testing of different composite m	α° and α°	vas
directions. Ontin	ermine their compressive moduli in the	of and 90) ² libre
atiffoned common	aion nonal designs, suitable for use as a		
structure were po	sion panel designs, suitable for use as a	primary	wing
Marat M	Team work in the design process	DM	IDN
The sim of this st	I feam work in the design process	DNI influonoo	LDN
ne ann or tins st	and within teams. Therefore, a literatur		uesign
undertaken and a	framework team working in the design	rrooog 1	was
control theory tec	hnique was proposed and evaluated	processi	Jased oli
Morris I	Experimental study of belicenter	ΔΔ	HAK/
WI01113, J	rotor	1111	GDL
The development	of a model helicopter rotor test rig has	enabled t	he
validation of actu	ator disc and blade element theories by	simple	
experimental means. Characteristics and shortfalls of each approach,			
particularly with regard to rotor induced velocity, have been investigated in			
both the hover an	d descending flight regimes.		

Student	Title	Group	Supervisor
Mouatt, D	Sloshing of fuel in aircraft fuel	MS	DGT/
	tanks		DNJ
Project concerns of	creating a CFD (computational fluid dy	namics) 1	nodel of a
2D rectangular sla	ack fuel tank then subjecting it to different	ent mode	s of
motion to encoura	ge sloshing. This model is then validate	ed experi	mentally
using a Perspex ta	nk on a multi-axis simulation table.		
Murley, R A	Developing environmental design	DM	EAD
	guidelines to combat the rebound		
	effect in consumer products		
This report details	the development of environmental des	ign guide	elines to
combat the econor	mic phenomenon known as the 'Rebour	nd effect'	within
energy intensive c	consumer products, through the use of c	ase-studi	es and the
application of suc	h guidelines to a contemporary washing	g machine	Э.
Newton, D	Dynamic modelling of and	MS	MNS
	experimentation on an industrial		
	robot		
The aim of this pr	oject was to create an accurate computation	ational m	odel of a
robotic arm. It in	volved producing a dynamic model of t	he robot	and its
motors using Lag	rangian theory in a software package ca	illed Dysi	m, and a
model of the robo	ts control system produced in Simulink	•	
Nichols, S	Leading edge turbine film cooling	AA	GDL
The effect on turb	ine blade film cooling effectiveness of	various p	arameters
in the leading edg	e region was investigated. Tests were c	carried ou	t in a low
speed wind tunnel	using an engine-representative large se	cale mod	el. This
will provide a full	er understanding of the complex fluid c	lynamics	of the
region, enabling the	he design of a more efficient cooling sy	stem.	
Okazaki, Y	Mass customisation of food	DM	GM
	production		
The aim of the pro	pject is to understand the concept of ma	iss custor	nisation
and discuss the feature	asibility of mass customisation to the co	onventior	nal food
industries.			
O'Mahony, C	Pressure measurement in a high	FS	GWO
	speed motorcycle engine		
Development and	analysis of pressure measurement tech	niques su	itable for
a Yamaha R6 engi	ine. Aims were to obtain combustion an	nd perfor	mance
data to validate and improve simulated engine models, and quantify the			
effect of specific design changes. The sensitivity and accuracy of these			
techniques were a	lso analysed to determine their suitability	ity.	
O'Shea, W	Woodpecker hammer	SB	JFVV
In nature, woodpe	eckers are the master chisellers. This pr	oject aim	ed to gain
an insight into the	reasons behind the success of the woo	dpecker b	y trying
to understand the kinematics of the drumming cycle. The project identified			
factors which led	factors which led to successful drumming and looked at applications which		
could incorporate methods that the woodpecker employs.			

Student	Title	Group	Supervisor
Ostle, T	Knowledge based engineering	DM	SJC
	(KBE) for change element design		
Testing, validating	g and developing design for changeover	techniqu	ies and
rules within the U	niversity of Bath - My project was to a	nalyse th	e potential
for design for char	ngeover with regard to changeover imp	rovemen	t.
Palmer, R	Organising electronic files in	DM	BJH/
, ,	Engineering organisations		MJD
Effectively manag	ing computer files can be difficult for i	ndividua	ls. To
address this, a sof	tware tool and questionnaire have been	develope	ed to
investigate the typ	bes of computer files used by engineers	and estal	olish
current practice for	or their management. From the data obta	ained, a	
methodology has	been produced to support more efficien	t electror	ic file
management with	in engineering organisations.		
Phillips, A J	Rock climbing safety systems	SMM	JV
Rock climbing at	a high standard often requires the use o	f less tha	n
adequate safety sy	stems. The reduction in peak force dur	ing a fall	is
identified as a me	ans of improving safety and the study o	f force	
characteristics wit	hin the rope system is undertaken durin	ng simula	ted
climbing falls.		-8	
Pickwell, I	Gas turbine pre-swirl cooling	AA	MW
,	system compressible flow		
Pre-swirl cooling systems occur in many rotor-stator systems to transfer			
cooling air to the	rotating blades. This project used a ger	neral purp	ose CFD
software package	to introduce compressibility effects to a	a comput	ational
model of the syste	em. Comparisons between computation	s of engi	ne
operating and exp	erimental test rig conditions were made	e.	-
Povntz-Wright.	Experimental investigation of	AA	GDL/IG
0	compressibility effects on a low-		
-	sweep delta wing		
An experimental r	project researching the effects of compr	essibility	on a low
sweep delta wing.	Flow visualisation and pressure measu	rements	were taken
at a range of Macl	n numbers and angles of attack using th	e transor	ic wind
tunnel.	6 6		
Reed. J A R	Validation of a fully adjustable	MS	JD
	trailer for the measurement of		
	towed vehicle high speed stability		
This study is part	of an ongoing programme of research i	nto carav	an design.
A steel trailer equ	ipped with adjustable masses is used to	simulate	a range
of caravan configu	urations. Road stability tests are carried	l out to in	nvestigate
the level of influence that key design parameters have on the dynamic			
behaviour of the t	railer.		

Student	Title	Group	Supervisor
Reglar, N D W	The design of a fracture healing	SB	JLC
	measurement device		
To produce a conc	cept design of a portable, 'patient-friend	lly', clini	cal
fracture healing m	neasurement device that utilises the resu	lts from	the
ongoing research	into ultrasound and fractures carried ou	t at the U	niversity
of Bath.			
Reid, DA	Undercarriage for rough landing	MS	CWS
	strips		
Following natural	disasters, mercy flights need to land an	nd take of	f as close
to the disaster area	a as possible. Operation from rough lan	ding strip	s is a
serious concern fo	or humanitarian and military missions T	his proje	ct
examines the aircr	raft design challenges. The intention is	to develo	p a 'smart'
undercarriage, for	rough terrain operation, and to compar	e its perfe	ormance
with a passive und	lercarriage. A Simulink simulation of th	ne ground	l
dynamics of a larg	ge transport aircraft has been developed	to analys	se the
problems and info	rm design of potential solutions.		
Roach, M	Development of the 2005 Formula	FS	AG
	Student chassis using finite		
	element analysis and validation		
	with physical testing		
The chassis for the international 2005 Formula Student event, which helped			
achieve Overall C	lass 3 Winner (2004) has been modelle	d using f	inite
element analysis.	This model is validated by means of ph	ysical tes	ting,
allowing complex	loading scenarios to be tested to furthe	r the dev	elopment
and performance	of the design.		
Rogers, F	Trends in energy use and carbon	AA	GPH
	emissions associated with the UK		
	domestic building sector		
If the UK is to red	luce its carbon emissions by 60% by 20	50 then t	he
domestic building	sector will need to play a large role. It	is respon	sible for
around 30% of the	e total UK energy demand and around 2	3% of th	e UK
greenhouse gas er	nissions. In this project the historic tree	nds are ar	nalysed in
order to determine the key factors that will affect the energy use and carbon			
emissions in the UK domestic building sector in the future. The technology			
that could be used to help reduce the carbon emissions from the domestic			
sector are also looked at. Some future projections are made for a business			
as usual scenario to help discover the scale of the task of reducing carbon			
emissions by 60% by 2050. An example of a strategy for the sector that			
meets this target is	s given.		

Student	Title	Group	Supervisor
Saunders, R	Developing design guidelines to	DM	EAD
	help entrepreneurs or companies		
	transform bespoke products into		
	products for larger distribution		
The objective of the	his project was to discover and research	methods	and
trends seen in othe	er companies that have successfully ach	ieved the	e
transformation of	a product from low to high distribution	, and from	n this
develop ideas for	best practice that could be published to	enable of	ther
companies to do the	he same.		
Schumacher, D	Analysis of documents/document	DM	SJC/
	decomposition strategies		MJD
The project invest	igates a new approach to retrieving info	ormation	from
within electronic of	documents. Document decomposition is	s a metho	d of
fragmenting docu	ments into chunks. By accessing these	chunks th	he
document can be e	explored in different ways. The work in	vestigate	s and
evaluates the appl	ication and usefulness of various model	ls called	document
decomposition scl	nemes.		
Sells, E	Towards a self replicating rapid	DM	AB
	prototyping machine		
Research into, des	ign and manufacture of an automated a	xis whicl	n can
create a linear elec	ctro-mechanical component. Designed	under the	self-
replication ethos t	his axis, combined with existing rapid	prototypii	ng
technology, demor	nstrates the infant stage of a machine w	hich can	make
itself.	C		
Shepherd, R	Web handling for intermittent	DM	GM/
_	motion		СЈМ
When handling w	ebs of materials it is important to maint	ain an ad	equate
feed supply of ma	terial and to keep the tension in the web	o reasona	bly
constant. A numbe	er of ways of doing this are available. O	ne is the	use of a
swinging arm whi	ch rises when material is required thus	increasin	g tension
and encouraging t	he input reel to unwind. This project ha	s investig	gated
modelling the acti	on of such a swinging arm and has gen	erated pro	ofiles of
the tension agains	t processing time. These are helpful in	understan	ding the
processes involved	d and provide insight into how the hand	lling syste	em should
be set up.			
Shield, D	Evaluation of contact stresses in	DM	FHO
	forging		
The aim of this pr	oject was to investigate the measureme	nt of con	tact stress
components at the	die-workpiece interface during forging	g operatio	ns using
pressure pin load	pressure pin load cells mounted within the die, with a particular focus on		
using a combination of normal and angled pins to resolve the friction stress			
component.			
-			

Student	Title	Group	Supervisor
Shorrocks, R	Impact damage tolerance of	SB	RB
	composite kayaks		
This project conce	erns the damage incurred as a result of a	ı kayak ta	ıckle
during a game of	canoe polo. Physical testing along with	numerica	ıl analysis
methods are used	to examine the impact damage scenario	and sug	gest
possible design in	nprovements to either the laminate stack	king sequ	ence or
material specification	tion.		
Sims Williams,	The energy and environmental	AA	GPH
G D	impact implications of a highly		
	distributed UK electricity system		
The UK electricity	y system has developed around the basi	s of large	central
generating units.	Over the coming years, an increase in s	maller, d	istributed
generators may pr	ovide significant energy and environme	ental bene	efits. This
paper constructs a	ind evaluates scenarios for the role of di	istributed	
generation out to	2050, using interrelated thermodynamic	e and	
environmental app	praisal techniques.		
Smith, P J	Transient emissions profiling	AA	JGH/ CJB
A turbocharged Fo	ord 2.4L, 4-cylinder HSDI (high swirl o	lirect inje	ection)
Diesel engine with	h and without exhaust gas recirculation	was inve	stigated
for transient gased	ous exhaust emissions. Two different sp	eed emiss	sions
analysers were co	mpared when undertaking transient cha	nges in to	orque.
Nitrous oxides, hy	drocarbons, carbon monoxide and carb	on dioxic	le were
examined.			1000
Soper, N	Biomimetic approach to the	AA	MJC
	design of a climbing Mars Rover	1 .	.1
Analysis of the pe	erformance of climbing animals, with er	nphasis c	n the
slopes and surface	es they can attach to. Application of the	ese princi	pies
learned from natu	re, including relevant scaling laws, to the	the Mor	of a
childing robot, w	men will explore the extreme terrains o	i the Mar	tian
Surface.	CT Power model of a gospline	FS	CIR
Spanul, M	direct injection engine	15	CID
This research dem	onstrates the application of 1D compre	ssible flo	W
simulation to a ga	soline direct injection engine using the	GT-Pow	w er
modelling packag	e The wider context of this work was	to use thi	s model as
nart of a software	tool to investigate the calibration of Ve	hicle EC	
controller mans			
Spurr, J	Skeleton Bobsleigh push start	SMM	DPA/
~puil, o	force measuring system		CC
Skeleton Bobsleig	th is a unique ice sport in which athletes	s must uti	lise a
combination of sk	ills in competition. This project covers	the conce	eption,
design and develo	pment of a push start force measurement	nt system	for the
skeleton bobsleigh to provide performance data to athlete and coach.			

Student	Title	Group	Supervisor	
Steward, T	Design and development of scroll	SDP	SJC	
	vacuum pump			
The redesign and	development of a highly beneficial com	ponent th	nat is	
unique to BOC Ed	lwards' range of scroll vacuum pumps v	with the a	im of	
making the pump	more compact, visually pleasing and co	ost effecti	ve.	
Teo, C C	Ride and handling investigation	AA	CJB	
Investigation of ri	de and handling affected by anti-roll ba	rs and da	mpers	
tuning. Pico playe	r and sensors attached on vehicle is use	d to meas	sure	
suspension activity	y, longitudinal and lateral acceleration,	steer ang	le, brake	
and throttle pedal	position and vehicle speed. The data lo	gging obt	ained is	
analysed along a l	ist of answers to questionnaires for each	h amendn	nent	
made.				
Thakore, B B	Computational fluid dynamic	AA	GDL/	
	evaluation of a conceptual yaw-		MW	
	vectoring nozzle for Rolls-Royce			
This study concen	trates on applying manoeuvrability enh	ancemen	t through	
thrust vectoring to	UAV due to their varied application an	nd emergi	ng	
commercial potent	tial. A computational fluid dynamic inv	vestigatio	n is	
carried out using s	implified fixed geometry fluidic yaw v	ectoring	nozzle,	
provided by Rolls	-Royce plc to demonstrate proof-of-cor	ncept and		
preliminary evaluation	ation using CFX 5.7.			
Thethy, S Carton erection using robotics DM LBN/GM				
The aim of this res	search project was to investigate the use	e of robot	ic and	
computer modellin	ng techniques in the carton erection pro	cess. The	e type of	
carton erection exa	amined involved an epicyclic sun-plant	mechani	sm which	
pulled skillets from	n a magazine and rotated them into a fi	xed back	-stop	
forcing them to op	en. The project emulated the motion u	sing robo	otics. It	
determined the pre-	essure forces on the skillet during motion	on and		
experimentally ob	tained force values during impact with	the backs	top.	
Tillette de	U-shape equal channel angular	DM	FHO	
Mautort, A	extrusion			
Equal channel ang	ular extrusion (ECAE) is used in grain	refineme	nt of cast	
structure of metals	s and alloys. This project examines the	use of a U	J-shape	
ECAE device for	energy absorption through material defe	ormation	and	
introduces a new o	lesign that enables successive re-usabil	ity of the	device.	
An upper bound a	nalytical model of the U-shape device	was inves	tigated	
and results were compared with those obtained by the finite element method				
Turner, R	Non-linear modelling of elast-	MS	PP	
	omer and hydro-mounts			
Elastomer is a con	nplex non-linear material which exhibit	ts both a :	frequency	
and amplitude dependence which are typically modelled using a system of				
springs and dampers combined with a non-linear friction element. Hydro-				
mounts require further addition to the elastomer model in order to account				
for the inertia and frictional effects of the fluid.				

Student	Title	Group	Supervisor
Varah, S	Finite element modelling of gas	AA	ML/GDL
,	turbine rotor discs		
This project used	experimental data obtained from a Univ	versity tes	st rig to
predict the temper	ature distribution in an engine turbine	otor disc	
Simulations condu	icted in Ansys allowed thermal stress a	nd fatigue	e life of
the turbine disc to	be estimated. The simulation results w	ere comp	ared to
engine data from]	Rolls-Rovce.	P	
Warne, A	Small gliders for sensor distribu-	AA	MJC
	tion		
This project is an	investigation into the use of small, glid	ing, delta	wing
aircraft as a senso	r distribution platform. The potential ar	polication	s and
enabling technolo	gies are considered while the flight dy	namics ar	e
investigated analy	tically, experimentally and by simulation	on.	•
Watson S E	Screw drive for an endoscope	SB	JFVV/
Watson, 5 L	Serew arrive for an endoscope	~2	JW
This project looks	at the concept of a screw driven, medi-	cal, endos	scope for
operation in the la	rge intestine. Theoretical and experime	ental resu	lts are
combined, focusir	ng generating the required driving force	for the p	robe.
Webb, J R W	Advanced manufacturing tech-	FS	AG
	niques in a Formula Student car		
An investigation of	of multi-axis computer numerically con	trolled (C	CNC)
machining focusing on the benefits over conventional 3-axis CNC			
machining. This re	eport investigates the potential benefits	of multi-	-axis
machining to the l	Formula Student project. It aims to prov	vide a gui	de to aid
new user uptake o	f these processes.	0	
Williams, O	Environmental and sustainability	DM	CAM/
	benefit of remanufacturing		GPH
This project is loo	king into the environmental and sustain	hability be	enefits of
remanufacturing,	with a case study in the refrigeration in	dustry. Tl	ne project
looks into the pos	sibilities and barriers to remanufacturin	ig in the	1 0
refrigeration indus	stry, how recent legislation such as the	WEEE di	rective
has affected the in	dustry, and what possible alternative te	chnology	could
improve the end-c	of-life options for refrigerators.	0,	
Williams, P G	Modelling variability of chassis	DM	ARM
	dynamometer testing		
This project is an	investigation into the various factors w	hich cont	ribute to
chassis dynamom	eter testing variability. This includes the	ne consid	eration of
environmental cor	nditions, driver variability, and control	of input	
parameters. The purpose of this investigation is to improve result			
consistency in future testing, which will allow more meaningful conclusions			
to be obtained from such testing			

Student	Title	Group	Supervisor
Wills, M C	Performance and stability in	AA	MJC
	formation flight		
Fixed wing aircrat	ft can benefit from formation flight by u	utilising t	he up -
wash from the trai	ling wingtip vortex of the lead aircraft.	This red	uces the
energy necessary	to achieve and/or maintain a specific fli	ght goal	for the
trail aircraft. This	project investigates the performance be	enefits co	mpared to
the stability dis-be	enefits of formation flight.		
Wong, W C K	Unsteady aerodynamics around a	AA	MJC
	flapping wing		
The vortex domin	ated unsteady aerodynamics around a f	lapping w	ving is
numerically studie	ed using a time-dependent discrete vort	ex panel	method.
Investigations inv	olve modelling a flow over an oscillatir	ng 2D aer	ofoil in
pitch, plunge or b	oth. Corresponding wake structures leav	ving the t	railing
edge are compute	d according to the Kutta and Kelvin cor	nditions.	
Wright, D	Human powered submarine: An	MS	CWS/
	ergo meter for diver testing and		WMM
	training		
An investigation i	nto the efficiency of the human 'engine	' in an ur	iusual
situation of recum	bent stepping in order to facilitate optimised	num seat	design
and consequently	the most efficient powering of a human	powered	l
submarine.	I		
Wright, J	The application of natural	DM	AB
	materials for current roles in		
	buildings		
The use of ecolog	ically sustainable building materials has	s the pote	initial to
significantly reduce the environmental impact of the construction industry.			
Hemp-lime concre	ete is a natural-based material that is ide	eal for ere	ecting
wall structures as	it is lightweight, durable and a good the	ermal inst	ulator.
This project investigates ways of improving the physical characteristics and			istics and
commercial appea	I of the material, combining mechanica	I and che	mical
testing with produ	ct development.		

Key to Groups: AA = Aero/Auto; DM = Design & Manufacturing; FS = Formula Student; MS = Machine Systems; SB = Structures & Bioengineering; SMM = Sports, Medical & Materials; SDP = Specialist Design Project

2005 Engineering with Language MEng Year 4 Project Abroad

Student	Project & Supervisor	Assessor	
FRANCE			
Baxter, F R	The inclusion of physiological properties	AWM	
	in a computational model of the human		
	knee		
	Dr L Chèze, Université Claude Bernard		
	(Lyon1) /INRETS, Lyon		
The objective of the	his study is to make an existing inverse dynamic		
computational mo	del more representative of the physiology of the	knee in	
order to improve t	he accuracy of the results it produces. A muscul	ar model	
is developed to be	included in the model's optimisation process.		
Duque, A	Modelling system and planning for the	ARM	
	study of the work load of the company		
	"Icare"		
	O Devise, IFMA – LIMOS, Clemont-Ferrand		
To provide Icare (laboratory that does microbiology analysis for o	ther	
companies) with a	software package that performs a simulation of	the	
production worklo	oad of the number of orders received built around	three big	
domains: the emp	loyees, the rooms, the tests in function of time.		
Fitzsimons, D J	Design and development of an aid for	LBN	
	sailors with limited hand strength and		
	functionality		
	D Brissaud, ENSHMG, INPG Grenoble		
Sailing is often pr	omoted as being highly accessible for the disable	ed.	
However, for peop	ple with limited hand functionality, such as those	e with	
arthritis, problems	s arising from rope-handling can present serious	barriers.	
Solutions for a sai	ling aid product to overcome these problems have	ve been	
designed and deve	eloped through to prototype stage.		
Garai, C	Study of Corecell foam for the fabrication	WMM	
	by infusion of sandwich composites		
	Prof F Trochu, Génie Mécanique, École		
	Polytechnique de Montréal		
The main project a	aims were to investigate the quantity of resin abs	sorbed by	
the foam core during an infusion and examine the flexural rigidity of the			
foam core. Four panels were fabricated using the Vacuum Assisted Resin			
Infusion process and four-point flexural tests were carried out on sandwich			
structured specimens and infused foam specimens.			

Student	Project & Supervisor	Assessor
Harvey, A D	Applying an integrated design method to	EAD
	study the consumer perceptions of	
	automobile dash-boards	
	B Yannou, Laboratoire Génie Industriel,	
	Ecole Centrale Paris	
The integrated des	sign method is based on usability tests that apply	a
combination of cla	assical marketing and decision-making theories	to the
assessment of pro-	duct semantics. This project aims to demonstrate	e the
method's applicati	ion to complicated products; such as the automol	oile dash-
board, and to prov	/e it's relevance in industry.	
McSherry, R	Experimental study of ducted counter-	SAM
-	rotating rotors	
	Dr R Barenes, SupAero, Toulouse	
The project was u	ndertaken at the National School of Aeronautics	and
Aerospace (SUPA	ERO) in Toulouse, France. It comprised an expe	rimental
investigation into	the effect of duct geometry on the performance	of a
ducted coaxial ass	sembly of two counter-rotating rotors, intended f	or micro
air vehicle applica	ations.	
O'Hare, J	Is there a future in the engineering of	CAM
	remanufactured products?	
	D Brissaud, Laboratoire 3S, INPG,	
	Grenoble	
Remanufacturing	is a \$53 billion industry in the USA and often ha	IS
significant enviror	nmental benefits over materials recycling and oth	ner End-
of-Life strategies.	This project considers how the Repro 2 design	tool can
be applied in indu	stry to maximise the benefits of remanufacturing	g for the
customer, the com	pany and the environment.	-
Shelswell, R	Validation of an implementation of X -	GWH
	FEM on parallel computers using	
	distributed memory	
	E Béchet, Ecole Centrale, Nantes	
A scalability analy	ysis of the parallelisation of the extended finite e	lement
method developed	and run on the cluster at the Ecole Centrale de l	Nantes.
Using a 14 proces	sor distributed memory architecture various tests	s were
developed and rur	n to validate the scalability of the code written at	ECN.
van Poelgeest,	Active control of acoustic vibrations	PSK
Α	between walls	
	L Gaudiller, INSA Lyon	
The objective of t	his study was to investigate active control metho	ds and
apply them the co	ntrol of a structural system such as a rotor. A	
bibliographic stud	ly was undertaken in the subject of active acoust	ic control.
The control metho	ods were adapted and simulations were carried or	ut using
MATLAB and SI	MULINK.	-

Student	Project & Supervisor	Assessor
White, B	Evaluation of a capillary tube system	DASR
	'Aqua 10' for radiant ceiling cooling and	
	heating	
	J Virgone, CETHIL, INSA Lyon	
Heliosaqua are a s	start up company looking to develop their produc	et, a
capillary tube syst	tem 'AQUA10', for radiant ceiling cooling and or	heating
applications. An a	ssessment of the thermal performance of this pro-	oduct
combined with different installation materials was carried out for		
development and	marketing purposes.	
Zachariadis, A	Calculs de rotor contrarotatif caréné par	MJC
	une approche Navier-Stokes	
	Dr J Gressier, SupAero, Toulouse	
A computational s	study aimed at understanding the hovering perfor	mance of
ducted counter-rot	tating rotors for micro air vehicle applications.	Гhis
project looks at the performance of a single rotor, but will be further		
extended at SUPA	ERO to consider both rotors. The study includes	3D CAD
design, structured	mesh generation, CFD calculations and a study	of the
salient aerodynam	ical features of the rotor.	

Student	Project & Supervisor	Assessor		
GERMANY				
Garlati, T	Analysis of the cost and usability of	MW		
	technologies on the subject of Airport			
	capacity			
	DiplIng. Björn Brückner, Technische			
	Universität München			
This project is part of a larger research project at the TU München, aimed to				
assess the interdependencies between aircraft and the airport. The aim was				
to develop a methodology with which the costs incurred with capacity				
expansions can be better assessed. The focus is on large airport in Europe and in the USA.				
Kandemir, U	Scenario analysis and turbulence	LBN		
	management to determine changes			
	required to businesses order processing			
	systems			
	Nils Müller, IWB, Technische Universität			
	München			
Many businesses rely on their OPS to monitor and control all business				
activities, including supply-chain management, product-shipment and a				
multitude of shop-floor manufacturing processes. The project details a				
company-specific method of mapping the future by identifying key				
turbulences facing a business and consequently deriving required changes in				
business strategy and on the shop-floor.				
Littler, A B	Creation of a control system to enable	GDL		
	calibration of pneumatic probes for			
	automation			
	Prof. DrIng. R. Nienuis, Institut fur Studiantuiche und Turbeaubeitamagahinen			
	DWTH Agehon			
The Meeh average	KWINAUCHEN r of the flow within the collibustion right the Inst	ituta fiin		
Strahlantriaha und Turbaarbaitamagahinan in Aaahan waa crisinally.				
Summanurede und Turboardelismaschinen in Aachen was originally				
collibration process to become automated a new valve was designed. The				
notice the movement of the				
valve and to fully implement the new valve into the calibration rig				
varve and to runy implement the new varve into the cambration rig.				

Student	Project & Supervisor	Assessor		
McGee, NA	Preliminary in vitro study to compare two	JLC		
	lumbar inter-body fusion cages			
	concerning relative motion, stability and			
	subsidence			
	Prof. Dr. H J Wilke,			
	Institut für Unfallchirurgische Forschung			
	und Biomechanik, Universität Ulm			
	Inter-body fusion cages are most commonly implanted			
	to restore function to spinal segments suffering from			
	degenerative disc disease. Prerequisite for a successful			
COCO	fusion of spinal segments is little relative motion			
Monosegmental spinal	between the implant and vertebra. My objectiv	e was to		
specimen with two	devise a method to measure and calculate the r	elative		
posterior lumbar inter-	motion between an inter-body fusion cage and	the		
Makanna DC	Eurodemontal investigations into	CDI		
McKenna, K C	Fundamental investigations into houndary layor turbulance with Miero	GDL		
	Doundary layer turbulence with where $DIV(\mu DIV)$			
	ΓΓV (μΓΓV) Dr Christian Kähler, Institut für			
	Strömungsmechanik Technische Universität			
	Braunschweig			
This project emplo	by the novel uPIV technique to investigate the	wall shear		
stress and velocity	distributions in a turbulent boundary layer, with	the		
objective of testing	g the reliability of existing empirical data. It sho	ould		
provide a valuable reference for the normalisation of these parameters in the				
inner region near t	to the wall.			
Rayner, R	The development of a brake control	CJB		
	system and tyre slip model for a model of			
	a fuel cell powered vehicle using Matlab/			
	Simulink			
	J Aber, Institut Kraftwesen Aachen,			
	RWTH Aachen			
A Matlab/Simulink model, that simulates the behaviour of the powertrain of				
a hydrogen fuel cell powered vehicle will be modified. Algorithms to model				
the influence of tyre slip on the motion of the vehicle will be implemented.				
The influence of tyre slip and different vehicle configurations on vehicle				
performance will be investigated.				

~ .				
Student	Project & Supervisor	Assessor		
Stewart, K	Methoden zur parametrierung von	JD		
	einspurmodellen (Methods for the			
	parameterisation of the bicycle model)			
	Prof. DrIng. F. Küçükay, Institut für			
	Fahrzeugtechnik, Technische Universität			
	Carolo-Wilhelmina zu Braunschweig			
Within the field of vehicle dynamic simulation, it was sought to configure a graphical user interface-based system in the MATLAB/Simulink				
cinvitoninciti whereby a failing of oreycle models could, the ough the use of				
appropriate optimisation techniques, be parameterised to accurately simulate				
venicie manoeuvro	es corresponding to sets of previously measured	venicie		
test data.				
Towse, D C	Design of a CAD programme for the	AB		
	construction of a specifications list in			
	general mechanical engineering.			
	Ingo Schulz, IKT, RWTH Aachen			
A CAD programme was designed to facilitate the easy construction of an				
holistic specifications list and table, incorporating various design				
methodologies, which would also be used to interact with CAD tools for				
both the earlier and later stages of design.				

Prizes 2004

Smallpeice Trust Prizes - Design

Group Design Prize: Mechanical/Manufacturing/IED/Automotive

Tetraplegic Standing Device

BENNET, Darren Wai BOORMAN, Timothy David COOKE, Anthony Lawrence AZAIME, Hizam Shah LADD, Ryan Robert MARSH, William Geoffrey Arthur

Group Design Prize: - Aeronautical

Military Transport Project: ST4M Centaur TEAM B

BELASSIE, Alexander CLARKE, Liam Alastair Gordon GREAVES, Christopher Colin HAMILTON, Michael Thomas HARRIS, Christopher JADDOU, Mustafa LLOYD, Peter SHORROCKS, Rob John VARAH, Sanjeev

Accenture Business Prize

Manufacturing System for Telescopic Seating

HICKS, Alexander Nigel HOPCROFT, Adam John, DICKINSON, James Paul, SELLS, Edward, JACKSON, Oliver Robert,

Department of Mechanical Engineering

DOWTY GROUP NO 1 PRIZE

KOO, Tony Best student graduating in Mechanical Engineering

ROYAL AERONAUTICAL SOCIETY PRIZE

MARLES, David Best student graduating in Aerospace Engineering

FORD MOTOR COMPANY PRIZE

VINCENT, Thomas Best student graduating in Automotive Engineering

IEE PRIZE

JEZEQUEL, Alex Best student graduating in Manufacturing Engineering

CROWN Europe PRIZE

BOYD, Malcolm Best student graduating in Innovation & Engineering Design

FRANK WALLACE PRIZE

NIXON, Mark Best performance in the Language option of Engineering with a language course

JOSEPH BLACK PRIZE

FAWCUS, Philip Best performance in Student Group Project

IMechE (HEADQUARTERS) PRIZE

ELLIS, Steven Project Prize (Research Project)

IMechE (WESTERN BRANCH) PRIZE

ROBERTS, Andrew Fredric Barnes Waldron Best Student Prize

SIEMENS PLC PRIZE

ZACHARIADIS, Alexios Sir William Siemens Medal - best student in Engineering with German